Simple Harmonic Oscillators

Iridium LINCH－SK
2023．09．23

Syllabus

－Algebra Method
－Analysis Method

Algebra Method

- We know that both position and momentum are operators.
- It's always beneficial to examine the properties the two basic operators.
- Define a commuter: $[A, B]:=A B-B A$.

$$
\begin{aligned}
& \hat{x}|\psi\rangle=x|\psi\rangle \\
& \hat{p}|\psi\rangle=-\mathrm{i} \hbar \frac{\mathrm{~d}}{\mathrm{~d} x}|\psi\rangle
\end{aligned}
$$

University of Chinese Academy of Sciences

The Profound Commuter：$[x, p]$

－Actually，x and p operators do not commute．
－$f(x)$ is an arbitrary differentiable function．

$$
\begin{aligned}
& {[\hat{x}, \hat{p}] f(x)=\hat{x} \hat{p} f(x)-\hat{p} \hat{x} f(x)} \\
& =-\mathrm{i} \hbar x \cdot \frac{\mathrm{~d}}{\mathrm{~d} x} f(x)-\left(-\mathrm{i} \hbar \frac{\mathrm{~d}}{\mathrm{~d} x}(x f(x))\right) \\
& =-\mathrm{i} \hbar x \cdot \frac{\mathrm{~d}}{\mathrm{~d} x} f(x)+\mathrm{i} \hbar f(x)+\mathrm{i} \hbar x \cdot \frac{\mathrm{~d}}{\mathrm{~d} x} f(x) \\
& =\mathrm{i} \hbar f(x)
\end{aligned}
$$

The Profound Commuter：$[x, p]$

－It＇s proper to write：

$$
[\hat{x}, \hat{p}]=\mathrm{i} \hbar
$$

Simple Harmonic Oscillator

－We have known the Schrödinger equation for SHO：

$$
-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} \psi+\frac{m \omega^{2} x^{2}}{2} \psi=E \psi
$$

－It＇s easy to recognize that：

$$
\text { LHS }=\left(\frac{1}{2 m} \hat{p}^{2}+\frac{m \omega^{2}}{2} \hat{x}^{2}\right) \psi=\hat{H} x
$$

Nondimensionalization

－We are not dealing with more than one particle，and this is not a relativistic problem，so m is an constant．
－\hbar is an universal constant．
－We are dealing with one particular potential，so ω is also a constant．
－It is always awful to have such constants being taken care in every step of calculation，so we are finding a way to get rid of them．

Nondimensionalization

- E.g. in particle physics, we often say that the rest mass of electron is

$$
m_{\mathrm{e}}=0.511 \mathrm{MeV}
$$

- Rather than

$$
m_{\mathrm{e}}=9.109 \times 10^{-31} \mathrm{~kg}
$$

- In the first expression, MeV is a unit with an energy dimension. However, kg is a unit with mass dimension. How could they be equivalent?

Nondimensionalization

－The Einstein Mass－Energy Relationship：

$$
E=m c^{2}
$$

－We known that the speed of light is a constant，this is one of the conjecture of special relativity．We can simply assign $c=1$ ，now E and m are equivalent．

Nondimensionalization

－Caution：You can assign multiple physical quantities as unity， but self－consistency shall always hold．
－E．g．：Fine structure constant is a nondimensional number：
$\alpha=\frac{e^{2}}{4 \pi \varepsilon_{0} \hbar c} \approx \frac{1}{137}$
－You can always assign e^{2} as $1,4 \pi \varepsilon_{0}$ as 1 simultaneously，but now we can＇t assign $\hbar c$ as 1 ．

Nondimensionalization

－Back to the SHO occasion：

	M	L	T
$\boldsymbol{\hbar}$	1	2	-1
m	1	0	0
ω	0	0	-1

－As long as they are linear irrelative，it is well－assigned．
－Calculate the determinant：

$$
\left|\begin{array}{ccc}
1 & 2 & -1 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right|=2 \neq 0
$$

－They are linear irrelative．

Nondimensionalization

- We are able to rewrite the Schrödinger equation of SHO in a simpler equation:

$$
-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} \psi+\frac{1}{2} x^{2} \psi=E \psi
$$

- In this case, $\omega=\hbar=m=1$.
- Then the LHS is: \quad LHS $=\frac{1}{2}\left(\hat{x}^{2}+\hat{p}^{2}\right) \psi$

Commuter

－Some pals may try to represent the LHS Hamiltonian as：

$$
\text { LHS } ?=\frac{1}{2}(\hat{x}+\mathrm{i} \hat{p})(\hat{x}-\mathrm{i} \hat{p}) \psi
$$

－However now we shall note that x and p operators are not commutative．
－However，such a＂dissolution＂inspired us to rewrite the operators in a more symmetric way：

$$
\begin{aligned}
& \hat{a}_{+}=\frac{1}{\sqrt{2}}(\hat{x}-\mathrm{i} \hat{p}) \\
& \hat{a}_{-}=\frac{1}{\sqrt{2}}(\hat{x}+\mathrm{i} \hat{p})
\end{aligned}
$$

Ladder Operator

－Do they commute？

$$
\begin{aligned}
& {\left[\hat{a}_{+}, \hat{a}_{-}\right]=\hat{a}_{+} \hat{a}_{-}-\hat{a}_{-} \hat{a}_{+}} \\
& =\frac{1}{2}[(\hat{x}-\mathrm{i} \hat{p})(\hat{x}+\mathrm{i} \hat{p})-(\hat{x}+\mathrm{i} \hat{p})(\hat{x}-\mathrm{i} \hat{p})] \\
& =\frac{1}{2}\left[\left(\hat{x}^{2}+\mathrm{i} \hat{x} \hat{p}-\mathrm{i} \hat{p} \hat{x}+\hat{p}^{2}\right)-\left(\hat{x}^{2}-\mathrm{i} \hat{x} \hat{p}+\mathrm{i} \hat{p} \hat{x}+\hat{p}^{2}\right)\right] \\
& =\frac{1}{2} \cdot 2 \mathrm{i}[\hat{x}, \hat{p}]=\mathrm{i}[\hat{x}, \hat{p}]=-1
\end{aligned}
$$

－The answer is nope．

Ladder Operator

－How to represent Hamiltonian？

$$
\begin{aligned}
& \hat{H}=\frac{1}{2}\left(\hat{x}^{2}+\hat{p}^{2}\right) \\
& =\frac{1}{2} \cdot \frac{1}{2}\left[\left(\hat{x}^{2}+\mathrm{i} \hat{x} \hat{p}-\mathrm{i} \hat{p} \hat{x}+\hat{p}^{2}\right)+\left(\hat{x}^{2}-\mathrm{i} \hat{x} \hat{p}+\mathrm{i} \hat{p} \hat{x}+\hat{p}^{2}\right)\right] \\
& =\frac{1}{2}\left(\hat{a}_{+} \hat{a}_{-}+\hat{a}_{-} \hat{a}_{+}\right)=\hat{a}_{+} \hat{a}_{-}+\frac{1}{2}
\end{aligned}
$$

－Do Hamiltonian commute with ladders？

Ladder Operator

－For ascending operator：

$$
\begin{aligned}
& {\left[\hat{H}, \hat{a}_{+}\right]=\left(\hat{a}_{+} \hat{a}_{-}+\frac{1}{2}\right) \hat{a}_{+}-\hat{a}_{+}\left(\hat{a}_{+} \hat{a}_{-}+\frac{1}{2}\right)} \\
& =\left(\hat{a}_{+} \hat{a}_{-}+\frac{1}{2}\right) \hat{a}_{+}-\hat{a}_{+}\left(\hat{a}_{-} \hat{a}_{+}-\frac{1}{2}\right) \\
& =\hat{a}_{+}
\end{aligned}
$$

Ladder Operator

－For descending operator：

$$
\begin{aligned}
& {\left[\hat{H}, \hat{a}_{-}\right]=\left(\hat{a}_{+} \hat{a}_{-}+\frac{1}{2}\right) \hat{a}_{-}-\hat{a}_{-}\left(\hat{a}_{+} \hat{a}_{-}+\frac{1}{2}\right)} \\
& =\left(\hat{a}_{-} \hat{a}_{+}-\frac{1}{2}\right) \hat{a}_{-}-\hat{a}_{-}\left(\hat{a}_{+} \hat{a}_{-}+\frac{1}{2}\right) \\
& =-\hat{a}_{-}
\end{aligned}
$$

Ladder Operator

-We are giving the two operators some properties:

$$
\begin{aligned}
& \hat{a}_{+}|n\rangle=A_{n}|n+1\rangle \\
& \hat{a}_{-}|n\rangle=A_{n-1}|n-1\rangle
\end{aligned}
$$

- Every system has a ground state, we are calling it the 0 state. The descending operator should vanish the 0 state:

$$
\hat{a}_{-}|0\rangle=0
$$

Ladder Operator

－Try to operate with Hamiltonian：

$$
\hat{H}|0\rangle=\left(\hat{a}_{+} \hat{a}_{-}+\frac{1}{2}\right)|0\rangle=\frac{1}{2}|0\rangle
$$

－For a known $n^{\text {th }}$ state energy，the next state，i．e．，$n+1^{\text {th }}$ has energy：

$$
\hat{H} \hat{a}_{+}|n\rangle=\hat{a}_{+}|n\rangle+\hat{a}_{+} \hat{H}|n\rangle=\hat{a}_{+}|n\rangle\left(1+E_{n}\right)
$$

－Now the mathematical induction proceeds，we have：

$$
E_{0}=\frac{1}{2}, E_{n}=n+\frac{1}{2} .
$$

Ladder Operator

－As usual we always want such states to be orthonormal：

$$
1=\langle n \mid n\rangle=\frac{1}{A_{n-1}^{2}}\left(\hat{a}_{+}|n-1\rangle\right)^{\dagger} \hat{a}_{+}|n-1\rangle=\frac{1}{A_{n-1}^{2}}\langle n-1| \hat{a}_{-} \hat{a}_{+}|n-1\rangle=\frac{1}{A_{n-1}^{2}}\langle n-1|\left(\hat{H}-\frac{1}{2}\right)|n-1\rangle=\frac{n-1}{A_{n-1}^{2}}
$$

－Note that：

$$
\hat{a}_{-}=\hat{a}_{+}^{\dagger}
$$

－So：

$$
A_{n}=\sqrt{n}
$$

Analysis Method

- Let's get back to the SHO Schrödinger equation:

$$
\frac{1}{2}\left(x^{2}-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\right) \psi=E \psi
$$

- Examining the asymptotic behavior of this equation will help a lot.

Asymptotic Properties

－At x^{\prime} s infinity，x^{2} is a square－divergent term．
－However，the equation still holds．Which means that the 2－order derivative term shall compensate such a divergence．

$$
x^{2} A(x) \sim \frac{\mathrm{d}^{2}}{\mathrm{~d}^{2}} A(x)
$$

－Exponential decay is not enough：the product of a polynomial and $\exp (-x)$ won＇t have an increasing order of polynomial after differentiating．
－The Gaussian could work．

Asymptotic Properties

- Gaussian after differentiated twice:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x} \mathrm{e}^{-x^{2}}=-2 x \mathrm{e}^{-x^{2}} \\
& \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} \mathrm{e}^{-x^{2}}=\left(4 x^{2}-2\right) \mathrm{e}^{-x^{2}}
\end{aligned}
$$

- The -2 term doesn't matter, which could contribute to E.
- However, such 2-order derivative over-compensated.
- We note that when every time it differentiates, the dominating term is multiplying $-2 x$. If the factor is $\pm x$, it could be rather good.

Asymptotic Properties

- We are using $-x^{2} / 2$ instead:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x} \mathrm{e}^{-\frac{x^{2}}{2}}=-x \mathrm{e}^{-\frac{x^{2}}{2}} \\
& \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} \mathrm{e}^{-\frac{x^{2}}{2}}=\left(x^{2}-1\right) \mathrm{e}^{-\frac{x^{2}}{2}}
\end{aligned}
$$

- That is right now.
- Actually this simplest asymptotic solution gives the exact solution of the original equation:

$$
\begin{aligned}
& \frac{1}{2}\left(x^{2}-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\right) \mathrm{e}^{-\frac{x^{2}}{2}}=\frac{1}{2} \mathrm{e}^{-\frac{x^{2}}{2}}=E \mathrm{e}^{-\frac{x^{2}}{2}} \\
& E=\frac{1}{2}
\end{aligned}
$$

Series Method

－We assume that the solutions can be represented as power series，still having the asymptotic property like $\exp \left(-x^{2} / 2\right)$ ．

$$
\psi_{n}(x)=\exp \left(-\frac{x^{2}}{2}\right) \cdot \sum_{i=0}^{\infty} a_{i} x^{i}
$$

－Substitute the form into the equation，we have：

$$
\begin{aligned}
& \text { LHS }=\frac{1}{2} \exp \left(-\frac{x^{2}}{2}\right) \cdot\left(x^{2} \sum_{i=0}^{\infty} a_{i} x^{i}-\left(\left(x^{2}-1\right) \sum_{i=0}^{\infty} a_{i} x^{i}+2(-x) \sum_{i=1}^{\infty} i a_{i} x^{i-1}+\sum_{i=2}^{\infty} i(i-1) a_{i} x^{i-2}\right)\right) \\
& =E_{n} \exp \left(-\frac{x^{2}}{2}\right) \cdot \sum_{i=0}^{\infty} a_{i} x^{i}=\text { RHS }
\end{aligned}
$$

Series Method

$$
\begin{aligned}
& \frac{1}{2}\left(\sum_{i=0}^{\infty} a_{i} x^{i}+\sum_{i=1}^{\infty} 2 i a_{i} x^{i}-\sum_{i=0}^{\infty}(i+2)(i+1) a_{i+2} x^{i}\right)=E_{n} \sum_{i=0}^{\infty} a_{i} x^{i} \\
& a_{i}+2 i a_{i}-(i+2)(i+1) a_{i+2}=2 E_{n} a_{i} \\
& a_{i+2}=\frac{2 i+1-2 E_{n}}{(i+2)(i+1)}
\end{aligned}
$$

－We shall consider the asymptotic behavior of the solution at infinitively high power：

$$
i \rightarrow \infty, a_{i+2}=\frac{2}{i} a_{i} .
$$

Asymptotic Behavior

- We found that:

$$
\begin{aligned}
& \exp \left(x^{2}\right)=\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}=: \sum_{j=0}^{\infty} b_{j} x^{j} \\
& \frac{b_{j+2}}{b_{j}}=\frac{2}{j}(j=2 k, k \in \mathbf{N})
\end{aligned}
$$

- Which means that the series has an asymptotic behavior like $\exp \left(x^{2}\right)$, multiply it with the factor $\exp \left(-x^{2} / 2\right)$, that is $\exp \left(x^{2} / 2\right)$, divergent at x 's infinity!
- How to solve the problem?
- We shall have the series cut off to a polynomial.

Solution (Analytical)

- At one particular index i, the a_{i+2} vanishes, so do the further terms.

$$
\begin{aligned}
& a_{i+2}=\frac{2 i+1-2 E_{n}}{(i+2)(i+1)} a_{i} \\
& E_{n} \in\left\{\left.i+\frac{1}{2} \right\rvert\, i \in \mathbf{N} .\right\}
\end{aligned}
$$

- There are two sets of recurrence relation for odd or even indices occasions, which originates from a_{0} or a_{1}, respectively.

University of Chinese Academy of Sciences

Symmetry Properties

- Theorem: For an assigned state n, the solution is an odd or even function.

$$
\begin{aligned}
& a_{i+2}=\frac{2 i-2 n}{(i+2)(i+1)} a_{i} \\
& a_{0}=1, a_{1}=0 . \\
& a_{0}=0, a_{1}=1 .
\end{aligned}
$$

Consistency

－How shall we verify the consistency of result of analysis and algebra methods？
－Recall the $0^{\text {th }}$ state：

$$
\begin{aligned}
& \hat{a}_{-}|0\rangle \propto(\hat{x}+\mathrm{i} \hat{p})|0\rangle=\left(x+\frac{\mathrm{d}}{\mathrm{~d} x}\right)|0\rangle=0, \\
& |0\rangle \propto \exp \left(-\frac{x^{2}}{2}\right)
\end{aligned}
$$

Consistency

- To generate the higher states, apply the explicit form of ascending operator:

$$
|n\rangle \propto \hat{a}_{+}|n-1\rangle \propto\left(x-\frac{\mathrm{d}}{\mathrm{~d} x}\right)|n-1\rangle
$$

- The $n^{\text {th }}$ state have form:

$$
|n\rangle \propto \exp \left(-\frac{x^{2}}{2}\right) \cdot \sum_{i=0}^{n} a_{i} x^{i}
$$

Consistency

- In which the coefficients satisfies:

$$
a_{i+2}=\frac{2 i-2 n}{(i+2)(i+1)} a_{i}
$$

- Do the ascending operator:

$$
\begin{aligned}
& |n+1\rangle \propto \exp \left(-\frac{x^{2}}{2}\right) \cdot \sum_{i=0}^{n+1} b_{i} x^{i} \\
& b_{i}=2 a_{i-1}-(i+1) a_{i+1} \\
& =2 a_{i-1}-\frac{2 i-2-2 n}{i} a_{i-1} \\
& =\frac{2 n+2}{i} a_{i-1} \\
& b_{i+2}=\frac{2 n+2}{i+2} a_{i+1}=\frac{2 n+2}{i+2} \frac{2 i-2-2 n}{(i+1) i} a_{i-1}=\frac{2 i-2(n+1)}{(i+2)(i+1)} b_{i} \underbrace{}_{\text {University of Chinese Academy of Scences }}
\end{aligned}
$$

Hermite Polynomials

－Hermite polynomials are defined as the cutoff polynomials in the solution．

$$
\psi_{n}(x)=\exp \left(-\frac{x^{2}}{2}\right) \cdot \mathrm{H}_{n}(x)
$$

－We have already known some methods to derivatize Hermite polynomials，namely recurrence formulae of coefficients and explicit ascending operator．
－Here we are introducing some other methods．

Recurrence Formulae in series

－Recall that we need a_{0} and a_{1} to iterate for one polynomial， which indicates two initial expressions are needed for the recurrence，we are assigning that：

$$
\begin{aligned}
& \mathrm{H}_{0}(x)=1, \mathrm{H}_{1}(x)=2 x . \\
& \left(x-\frac{\mathrm{d}}{\mathrm{~d} x}\right)\left(\exp \left(-\frac{x^{2}}{2}\right) \cdot \mathrm{H}_{n-1}(x)\right)=\exp \left(-\frac{x^{2}}{2}\right) \cdot \mathrm{H}_{n}(x) \\
& x-\frac{\mathrm{d}}{\mathrm{~d} x}=\hat{x}-\mathrm{i} \hat{p}=\sqrt{2} \hat{a}_{+} \\
& \hat{a}_{-} \hat{a}_{+}\left(\exp \left(-\frac{x^{2}}{2}\right) \cdot \mathrm{H}_{n-1}(x)\right)=n \exp \left(-\frac{x^{2}}{2}\right) \cdot \mathrm{H}_{n-1}(x) \\
& \frac{1}{2}\left(x+\frac{\mathrm{d}}{\mathrm{~d} x}\right)\left(x-\frac{\mathrm{d}}{\mathrm{~d} x}\right)\left(\exp \left(-\frac{x^{2}}{2}\right) \cdot \mathrm{H}_{n-1}(x)\right)=n \exp \left(-\frac{x^{2}}{2}\right) \cdot \mathrm{H}_{n-1}(x) \\
& \left(x+\frac{\mathrm{d}}{\mathrm{~d} x}\right)\left(\exp \left(-\frac{x^{2}}{2}\right) \cdot \mathrm{H}_{n}(x)\right)=2 n \exp \left(-\frac{x^{2}}{2}\right) \cdot \mathrm{H}_{n-1}(x)
\end{aligned}
$$

Recurrence Formulae in series

$$
\begin{aligned}
& \left(x-\frac{\mathrm{d}}{\mathrm{~d} x}\right)\left(x-\frac{\mathrm{d}}{\mathrm{~d} x}\right)\left(\exp \left(-\frac{x^{2}}{2}\right) \cdot \mathrm{H}_{n-2}(x)\right)=\exp \left(-\frac{x^{2}}{2}\right) \cdot \mathrm{H}_{n}(x) \\
& x \exp \left(-\frac{x^{2}}{2}\right) \cdot \mathrm{H}_{n-1}(x)-\frac{\mathrm{d}}{\mathrm{~d} x}\left(\exp \left(-\frac{x^{2}}{2}\right) \cdot \mathrm{H}_{n-1}(x)\right)=\exp \left(-\frac{x^{2}}{2}\right) \cdot \mathrm{H}_{n}(x) \\
& 2 x \exp \left(-\frac{x^{2}}{2}\right) \cdot \mathrm{H}_{n-1}(x)-2(n-1)\left(\exp \left(-\frac{x^{2}}{2}\right) \cdot \mathrm{H}_{n-2}(x)\right)=\exp \left(-\frac{x^{2}}{2}\right) \cdot \mathrm{H}_{n}(x)
\end{aligned}
$$

$$
\mathrm{H}_{n}(x)-2 x \mathrm{H}_{n-1}(x)+2(n-1) \mathrm{H}_{n-2}(x)=0
$$

Hermite Polynomials

－Some low order Hermite polynomials：

$$
\begin{aligned}
& \mathrm{H}_{0}(x)=1, \\
& \mathrm{H}_{1}(x)=2 x, \\
& \mathrm{H}_{2}(x)=4 x^{2}-2, \\
& \mathrm{H}_{3}(x)=8 x^{3}-12 x, \\
& \mathrm{H}_{4}(x)=16 x^{4}-48 x^{2}+12,
\end{aligned}
$$

Orthogonality

－Due to the orthogonality of wave functions，we can easily derive the orthogonality for Hermite polynomials：

$$
\int_{-\infty}^{+\infty} \mathrm{d}_{\mathrm{H}}^{m} \mathrm{H}(x) \mathrm{H}_{n}(x) \exp \left(-x^{2}\right)=N_{n}^{2} \delta_{m n}
$$

－Here，$\delta_{m n}$ is called Kronecker delta．
－This orthogonality is not very conventional，in fact，this is a weighted orthogonality with a weight $\exp \left(-x^{2}\right)$ ．

Normalization

－To obtain orthonormal eigenstates，we have to calculate norm squares of each states：
－But．．．we have to first calculate integrals of such terms：

$$
\int_{-\infty}^{+\infty} \mathrm{d} x x^{2 n} \exp \left(-x^{2}\right)
$$

－There is no need to calculate the odd power terms，because they vanish．

Normalization

- We first calculate the simplest:

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} \mathrm{d} x \exp \left(-\lambda x^{2}\right) \\
& =\sqrt{\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathrm{d} x \mathrm{~d} y \exp \left(-\lambda\left(x^{2}+y^{2}\right)\right)} \\
& =\sqrt{\int_{0}^{2 \pi} \mathrm{~d} \varphi \int_{0}^{+\infty} \mathrm{d} r r \exp \left(-\lambda r^{2}\right)} \\
& =\sqrt{\frac{\pi}{\lambda}}
\end{aligned}
$$

Normalization

－Recurrence relationship for higher power：

$$
\begin{aligned}
& G_{2 n}:=\int_{-\infty}^{+\infty} \mathrm{d} x x^{2 n} \exp \left(-\lambda x^{2}\right) \\
& =-\frac{\partial}{\partial \lambda} \int_{-\infty}^{+\infty} \mathrm{d} x x^{2 n-2} \exp \left(-\lambda x^{2}\right) ; \\
& G_{0}=\sqrt{\frac{\pi}{\lambda}}, \\
& G_{2 n}=\sqrt{\frac{\pi}{\lambda}} \frac{(2 n-1)!!}{(2 \lambda)^{n}}
\end{aligned}
$$

Dimension Recovery

-What is the dimension of the desired quantity?

- Simply time it up.

To be continued...

- Rodriguez's formula
- Generating function
- Et cetera

