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Simple Harmonic Oscillators



Syllabus

• Algebra Method
• Analysis Method



Algebra Method

• We know that both position and momentum are operators.
• It’s always beneficial to examine the properties the two basic 

operators.
• Define a commuter: [A, B] := AB − BA.
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The Profound Commuter: [x, p]

• Actually, x and p operators do not commute.
• f(x) is an arbitrary differentiable function.
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The Profound Commuter: [x, p]

• It’s proper to write:
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Simple Harmonic Oscillator

• We have known the Schrödinger equation for SHO:

• It’s easy to recognize that:
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Nondimensionalization

• We are not dealing with more than one particle, and this is not a 
relativistic problem, so m is an constant.

• ћ is an universal constant.
• We are dealing with one particular potential, so ω is also a 

constant.
• It is always awful to have such constants being taken care in 

every step of calculation, so we are finding a way to get rid of 
them.



Nondimensionalization

• E.g. in particle physics, we often say that the rest mass of 
electron is

• Rather than

• In the first expression, MeV is a unit with an energy dimension. 
However, kg is a unit with mass dimension. How could they be 
equivalent?

e 0.511 MeVm =

31
e 9.109 10  kgm −= ×



Nondimensionalization

• The Einstein Mass-Energy Relationship:

• We known that the speed of light is a constant, this is one of the 
conjecture of special relativity. We can simply assign c = 1, now 
E and m are equivalent. 

2E mc=



Nondimensionalization

• Caution: You can assign multiple physical quantities as unity, 
but self-consistency shall always hold.

• E.g.: Fine structure constant is a nondimensional number:

• You can always assign e2 as 1, 4πε0 as 1 simultaneously, but 
now we can’t assign ћc as 1.
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Nondimensionalization

• Back to the SHO occasion:

• As long as they are linear irrelative, it is well-assigned.
• Calculate the determinant: 

• They are linear irrelative.
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Nondimensionalization

• We are able to rewrite the Schrödinger equation of SHO in a 
simpler equation:

• In this case, ω = ћ = m = 1.
• Then the LHS is:
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Commuter

• Some pals may try to represent the LHS Hamiltonian as:

• However now we shall note that x and p operators are not 
commutative. 

• However, such a “dissolution” inspired us to rewrite the 
operators in a more symmetric way:
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Ladder Operator

• Do they commute?

• The answer is nope.
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Ladder Operator

• How to represent Hamiltonian?

• Do Hamiltonian commute with ladders?
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Ladder Operator

• For ascending operator:
1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,
2 2

1 1ˆ ˆ ˆ ˆ ˆ ˆ
2 2

ˆ

H a a a a a a a

a a a a a a

a

+ + − + + + −

+ − + + − +

+

     = + − +        
   = + − −   
   

=



Ladder Operator

• For descending operator:
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Ladder Operator

• We are giving the two operators some properties:

• Every system has a ground state, we are calling it the 0 state. 
The descending operator should vanish the 0 state:
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Ladder Operator

• Try to operate with Hamiltonian:

• For a known nth state energy, the next state, i.e., n+1th has 
energy:

• Now the mathematical induction proceeds, we have:
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Ladder Operator

• As usual we always want such states to be orthonormal:

• Note that:

• So:
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Analysis Method

• Let’s get back to the SHO Schrödinger equation:

• Examining the asymptotic behavior of this equation will help a 
lot.
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Asymptotic Properties

• At x’s infinity, x2 is a square-divergent term.
• However, the equation still holds. Which means that the 2-order 

derivative term shall compensate such a divergence.

• Exponential decay is not enough: the product of a polynomial 
and exp(-x) won’t have an increasing order of polynomial after 
differentiating.

• The Gaussian could work.
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Asymptotic Properties

• Gaussian after differentiated twice:

• The −2 term doesn’t matter, which could contribute to E.
• However, such 2-order derivative over-compensated.
• We note that when every time it differentiates, the dominating 

term is multiplying −2x. If the factor is ±x, it could be rather 
good.
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Asymptotic Properties

• We are using −x2/2 instead:

• That is right now.
• Actually this simplest asymptotic solution gives the exact 

solution of the original equation:
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Series Method

• We assume that the solutions can be represented as power 
series, still having the asymptotic property like exp(−x2/2).

• Substitute the form into the equation, we have:
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Series Method

• We shall consider the asymptotic behavior of the solution at 
infinitively high power:
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Asymptotic Behavior

• We found that:

• Which means that the series has an asymptotic behavior like 
exp(x2), multiply it with the factor exp(−x2/2), that is exp(x2/2), 
divergent at x’s infinity!

• How to solve the problem?
• We shall have the series cut off to a polynomial.
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Solution (Analytical)

• At one particular index i, the ai+2 vanishes, so do the further 
terms.

• There are two sets of recurrence relation for odd or even 
indices occasions, which originates from a0 or a1, respectively.
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Symmetry Properties

• Theorem: For an assigned state n, the solution is an odd or 
even function.
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Consistency

• How shall we verify the consistency of result of analysis and 
algebra methods?

• Recall the 0th state:
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Consistency

• To generate the higher states, apply the explicit form of 
ascending operator:

• The nth state have form:
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Consistency

• In which the coefficients satisfies:

• Do the ascending operator:
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Hermite Polynomials

• Hermite polynomials are defined as the cutoff polynomials in the 
solution.

• We have already known some methods to derivatize Hermite 
polynomials, namely recurrence formulae of coefficients and 
explicit ascending operator.

• Here we are introducing some other methods.
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Recurrence Formulae in series

• Recall that we need a0 and a1 to iterate for one polynomial, 
which indicates two initial expressions are needed for the 
recurrence, we are assigning that:
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Recurrence Formulae in series
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Hermite Polynomials

• Some low order Hermite polynomials:
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Orthogonality

• Due to the orthogonality of wave functions, we can easily derive 
the orthogonality for Hermite polynomials:

• Here, δmn is called Kronecker delta.
• This orthogonality is not very conventional, in fact, this is a 

weighted orthogonality with a weight exp(−x2).
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Normalization

• To obtain orthonormal eigenstates, we have to calculate norm 
squares of each states:

• But…we have to first calculate integrals of such terms:

• There is no need to calculate the odd power terms, because 
they vanish.
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Normalization

• We first calculate the simplest:
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Normalization

• Recurrence relationship for higher power:
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Dimension Recovery

• What is the dimension of the desired quantity?
• Simply time it up.



To be continued…

• Rodriguez’s formula
• Generating function
• Et cetera
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