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简单体系的精确解



Schrödinger Eqn.

• 3D Occasion:

• 1D Occasion:

• PDEs, often unable to solve analytically. 

• Discussion on simple occasions would be beneficial.
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Syllabus

• Free Particles

• Infinite Deep Well
• Finite Deep Well (Briefly)

• Tunnel Penetration (Briefly)

• Hydrogen Atom (Not Today)
• Some Mathematical Tricks (Interesting)



Free Particles (1D): To solve the equation

• V(x) = 0
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Free Particles (1D): To explain the solution

• No boundary conditions

• Momentum Operator: 

• We’d better adapt a general convention with clear physical 
explanation: 

• From such a solution, one can recognize that

• Just the classical Non-relativistic Dispersion (Energy-
Momentum) Relationship
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Free Particles (1D): Normalization Difficulty

• The WF here is not square-integrable:

• Whatever you assign a factor to ψ, the WF is always not a “well-
behaved WF”.

• Uncertainty Relationship: ΔxΔp≥ћ/2. As momentum is 
accurately determined, position is completely delocalized thus 
probability of observing the particle is equal everywhere in the 
space and even infinitely far away.

• Linear combination of solutions are also solutions of the S-Eqn. 
(Postulate I): A spectrum of the free particle’s momenta, then 
able to be normalized.

*d  d  1x x 
+ +

− −
= → 



Free Particles (1D): Normalization

• Normalized Free Particle WFs are not eigenfunctions of 
momentum operator, but such WF can be Fourier transformed 
to give superposition form of momentum eigenstates:

• This is another convention of coefficients for Fourier transform 
commonly using in QM.

( ) ( )

( ) ( )

i

i

1
d  e

2π

1
d  e

2π

px

px

p x x

x p p

 

 

+ −

−

+

−

=

=







Free Particles (1D): e. g. Gaussian

• Consider a normalized WF with Gauss form:

• Do a Fourier transform to acquire its momentum spectrum.
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Free Particles (1D): e. g. Gaussian

• Time-dependent Schrödinger Eqn. can be represented as follow:
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Free Particles (1D): Velocity Paradox

• Velocity of a simple momentum mode:

• Actually, the velocity of a simple momentum mode doesn’t 
represent the velocity of the particle. Because SMM-WFs are 
not well-behaved thus non-physical. 
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Free Particles (1D): Wave Packet Explanation

• Physical states, i.e. superposition of SMM-WFs, can be 
regarded as a Wave Packet.

• Sum up Single Momentum Mode Wave Function to get Wave Packet.

• The physical velocity shall be regarded as the velocity of WP, i.e. 
group velocity.

• Consider a WP having a major momentum p0 but a small 
momentum deviation around p0, then φ(p) is concentrating at p0 :
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Free Particles (1D): Wave Packet Explanation

• Substitute p by p0+s, to make it clear.

• After time t, it evolves. Because momenta distributes rather 
concentrated, it’s appropriate to Taylor expand the E~p relation:
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Free Particles (1D): Wave Packet Explanation

• For free particles, the E~p relation is 

• Now the velocity paradox is settled: regarding group velocity 
instead of phase velocity, i.e. the one of SMM-WFs as the 
particle one.
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Free Particles (3D): To solve the equation

• Variable separation enables independent considerations 
analogous to 1D on different directions.
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Free Particles (3D): Momentum Eigenstates

• In 3D, momenta are vectors with 3 independent components.

( )
i

; e


=
p x

x p



Wells

• A case slightly more difficult.

• V(x) = -V0, for -a<x<a; for other x, V(x) = 0.

• Boundary conditions need to be considered.
• Continuity of ψ: Required all the time: Discontinuity of WF means 

infinite momentum at this position.

• Continuity of dψ/dx: Required when the well is finitely deep, but can’t 
be established when the well is infinitely deep.



Finite Wells: Symmetry Constraints

• For a 1D potential with space reversal symmetry, the solution 
can be only even or odd, which added a constraint to the 
coefficients.

• For 1D case, no degeneracy will occur.

• Even and odd solutions belong to 2 different irreducible representation 
of the symmetry group for the potential.



Finite Wells

• Width: 2a, Height: V0

• Solve the ODE at different regions:
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Finite Wells: Boundary Conditions

• We will consider bounded states majorly, so assume V>E first. 
• When x ≤ -a or x ≥ a, if the WF gets exponentially larger when moving 

away from the well, then E is becoming infinite, which is non-physical. 
So coefficient C is zero.

• ψ should be continuous, without further explanation.

• Momenta at edges of the well are well-defined, so dψ/dx is continuous. 
A, and B shall satisfy such condition, i.e. left derivative = right 
derivative.



Finite Wells: Boundary Conditions, Even
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Finite Wells: Boundary Conditions, Odd
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Finite Wells: To determine E



Infinite Well: As V0 becomes infinite…

• We are changing some notations:
• Well width: 0~a, bottom potential = 0, potential out of well: infinite.

• Boundary Condition:
• 0 outside the well, any finite presence out of the well cause infinite 

eigenvalue.

• ψ should be continuous, without further explanation.

• Momenta at edges of the well are not well-defined(imagine the particle 
bounced backwards), so dψ/dx is discontinuous. 



Infinite Well: Solutions

• Can be solved analytically.
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Infinite Well: Interpretation

• n is the quantum number indicating eigenstates.
• For odd ns, the solutions are “even”, vice versa.

• The energy spectrum is proportional to n2.

• Gaps between same states is proportional to 1/m and 1/a2.



Infinite Well: A coarse approximation for 
conjugate olefins



Infinite Well: A coarse approximation for 
conjugate olefins



Infinite Well: 3D occasion
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