
Computational
Thinking:
A Perspective on
Computer Science

Zhiwei Xu · Jialin Zhang

Computational Thinking: A Perspective on
Computer Science

Zhiwei Xu • Jialin Zhang

Computational Thinking:
A Perspective on Computer
Science

Zhiwei Xu
University of Chinese Academy
of Sciences
Beijing, China

Jialin Zhang
University of Chinese Academy
of Sciences
Beijing, China

ISBN 978-981-16-3847-3 ISBN 978-981-16-3848-0 (eBook)
https://doi.org/10.1007/978-981-16-3848-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore
Pte Ltd. 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-16-3848-0

To Hao, for continuous inspiration and
support
Zhiwei

To my husband and little son, with love
Jialin

Preface

This book provides an introduction to computer science from the computational
thinking perspective. It explains the way of thinking in computer science through
chapters of logic thinking, algorithmic thinking, systems thinking, and network
thinking. It is purposely designed as a textbook for the first computer science course
serving undergraduates from all disciplines.

The book focuses on elementary knowledge such that all material can be covered
in a one-semester course of Introduction to Computer Science. It is designed for all
students, assuming no prior programming experience. At the same time, students
with prior programming experience should not find the course boring.

The book practices an active learning method, utilizing recent advice by Donald
Knuth: “The ultimate test of whether I understand something is if I can explain it to a
computer.” The book is designed to enable students to rise from the basement level
of remembering to the top level of creating in Bloom’s taxonomy of education
objectives. More than 200 hands-on exercises, thought experiments, and projects are
included to encourage students to create. Examples of creative tasks include:

• Design a Turing machine to do n-bit addition, where n could be arbitrarily large.
This could be a student’s first design of an abstract computer.

• Design a team computer to do quicksort. This could be a student’s first design of a
real computer, including its instruction set and machine organization.

• Develop a computer application (a steganography computer program) to hide a
text file hamlet.txt in a picture file Autumn.bmp.

• Design a smart algorithm and a program to compute Fibonacci numbers F(n),
where n could be as large as one million or even one billion.

• Create a dynamic webpage of creative expression for a Kitty Band, which can
play a piece of music given an input string of music scores.

The material of the book has been used in the University of Chinese Academy of
Sciences since 2014, serving a required course for freshmen from all schools. It was

vii

also used in summer schools organized by China Computer Federation, to train
university and high-school instructors on teaching a Computer Fundamentals course
utilizing computational thinking.

Supplementary material is provided at cs101.ucas.edu.cn.

Beijing, China Zhiwei Xu
Jialin ZhangOctober 2021

viii Preface

http://cs101.ucas.edu.cn

Introduction

This textbook is for a one-semester course of Introduction to Computer Science (e.g.,
CS101), targeting undergraduate students from all disciplines. It is a self-contained
book with no prerequisites. The little prior knowledge and notations needed are
explained along the way and summarized in Appendices.

The book is designed to introduce elementary knowledge of computer science
and the field’s way of thinking. It has the following four objectives and features:

• Embodying computational thinking. The way of thinking in computer science is
characterized by three features without and eight understandings within. Intro-
ductory bodies of knowledge are organized into chapters of logic thinking,
algorithmic thinking, systems thinking, and network thinking.

• Aiming at upper levels of Bloom’s taxonomy, with a significant portion of learning
material going from “remember” to “create,” as shown in Fig. 1. The learning
method uses Knuth’s Test: “The ultimate test of whether I understand something
is if I can explain it to a computer.” More than 200 hands-on exercises and
thought experiments are included to encourage students to create.

• Focusing on elementary knowledge without dumbing down. An explicit goal is
that all material should be coverable in one semester, for a class of hundreds of
students of all disciplines, assuming no prior programming experiences. At the
same time, experienced students should not find the course boring.

• Learning from a decade of educational experience. We spent 4 years designing
the course and 6 years teaching the material. The contents have gone through
three major revisions. For instance, version 1 has no programming. Version
2 includes Go language programming contents. Version 3 (the current version)
requires a student to write roughly 300 lines of Go code and 100 lines of Web
code, where most students can learn Web programming by themselves.

ix

cr
ea

te

B
lo

o
m

’s
 T

ax
o

n
o

m
y

P
ro

d
u

ce
 n

ew
 o

r
o

ri
g

in
al

 w
o

rk
D

es
ig

n,
 a

ss
em

bl
e,

 c
on

st
ur

ct
, c

on
je

ct
ur

e,
 d

ev
el

op
, f

or
m

ul
at

e,
 a

ut
ho

r,
in

ve
st

ig
at

e

R
ec

al
l f

ac
ts

 a
n

d
 b

as
ic

 c
o

n
ce

p
ts

de
fin

e,
 d

up
lic

at
e,

 li
st

, m
em

or
iz

e,
 r

ep
ea

t,
st

at
e

V
an

de
rb

ilt
 U

ni
ve

rs
ity

 C
en

te
r

fo
r T

ea
ch

in
g

E
xp

la
in

 id
ea

s
o

r
co

n
ce

p
ts

cl
as

si
fy

, d
es

cr
ib

e,
 d

is
cu

ss
, e

xp
la

in
, i

de
nt

ify
, l

oc
at

e,
 r

ec
og

ni
ze

,
re

po
rt

, s
el

ec
t,

tr
an

sl
at

e

U
se

 in
fo

rm
at

io
n

 in
 n

ew
 s

it
u

at
io

n
s

ex
ec

ut
e,

 im
pl

em
en

t,
so

lv
e,

 u
se

, d
em

on
st

ra
te

, i
nt

er
pr

et
, o

pe
ra

te
,

sc
he

du
le

, s
ke

tc
h

D
ra

w
 c

o
n

n
ec

ti
o

n
s

am
o

n
g

 id
ea

s
di

ffe
re

nt
ia

te
, o

rg
an

iz
e,

 r
el

at
e,

 c
om

pa
re

, c
on

tr
as

t,
di

st
in

gu
is

h,
 e

xa
m

in
e,

ex
pe

rim
en

t,
qu

es
tio

n,
 te

st

Ju
st

if
y

a
st

an
d

 o
r

d
ec

is
io

n
ap

pr
ai

se
, a

rg
ue

, d
ef

en
d,

 ju
dg

e,
 s

el
ec

t,
su

pp
or

t,
va

lu
e,

 c
rit

iq
ue

, w
ei

gh
ev

al
u

at
e

an
al

yz
e

ap
p

ly

u
n

d
er

st
an

d

re
m

em
b

er

F
ig
.1

B
lo
om

’s
ta
xo

no
m
y
of

ed
uc
at
io
na
l
ob

je
ct
iv
es
.(
F
ig
ur
e
sh
ow

in
g
B
lo
om

’s
ta
xo

no
m
y
by

V
an
dy

C
F
T
is
lic
en
se
d
un

de
r
C
C
B
Y

2.
0)

x Introduction

Problem-Solving Examples

Computer science is a subject studying computational processes in problem-solving
and creative expression. This textbook includes over 200 problems as examples,
exercises, and hands-on projects. They provide a glimpse of how computers work
and what kinds of problem-solving and creative expression are enabled by computer
science and computational thinking.

The book shows how to solve such problems. In doing so, it introduces elemen-
tary knowledge on not only how to use a computer but also how to design a
computer. We demonstrate that computer science is intellectually interesting, by
heeding Donald Knuth’s advice: “In most of life, you can bluff, but not with
computers.”We take special care to avoid underestimating the potentials of students
and dumbing down the course material.

Six representative problems are shown below and illustrated in Fig. 2.

• Design a Turing machine to do n-bit addition, where n could be arbitrarily large,
such as n ¼ 23 ¼ 8, n ¼ 210 ¼ 1024, or n ¼ 220 ¼ 1048576. This could be a
student’s first abstract computer.

• Design a human-computer to do quicksort. A student is asked to design a team
computer to successfully rearrange a group of students ordered by students’
names to another group ordered by students’ heights, as shown in Fig. 2a. This
could be a student’s first design of a working real computer, complete with its
instruction set and machine organization of essential components.

• Compute the area of a panda. Computer science offers new abilities to solve
problems beyond ordinary school math, such as computing the irregular area of
the panda picture in Fig. 2b. The same computer application idea extends to
irregular shapes of multiple dimensions, and “area” can be replaced by volume,
mass, energy, number of particles, etc.

• Compute Fibonacci numbers F(n), where n could be as large as one billion. This
problem reveals how smart algorithms, together with systems support, can
drastically reduce computing time, from 2n to n or even logn.

• Prove a problem belonging to P or NP, intuitively. Students are asked to prove
whether a simple problem belongs to P or NP. For such algorithmic complexity
material to be included in an introductory course, the problem and the proof must
be intuitively simple, involving only elementary mathematics and a short reason-
ing sequence. A sample problem is the following: decide if 2n numbers can be
divided into two groups, each having n numbers, such that the sums of the two
groups are equal.

• Create Kitty Band. Students are asked to create a dynamic webpage showing their
personal artifacts. An example is provided by Miss Siyue Li of the University of
Chinese Academy of Sciences, who created the Kitty Band work of creative
expression, as shown in Fig. 2c. This witty band can play a piece of music given
an input string of music scores. As a freshman of Physics major, she finished this
project in 3 days. Half of her time was spent on thinking, designing, and making.
Coding and debugging accounted for no more than 50% of the time.

Introduction xi

Intended Audience

The primary audience of this book are undergraduates interested in taking a Com-
puter Science 101 (CS101) course. The material of the book has been used in the
University of Chinese Academy of Sciences (UCAS) since 2014, serving a 3-credit,
required course of Introduction to Computer Science for freshmen undergraduate
students from the schools of Sciences, Engineering, Mathematics, Business and
Management, and Arts and Humanities.

The book is also beneficial to teachers and lecturers of an Introduction to
Computer Science course. The material of the book was used in two summer schools
organized by China Computer Federation, to train university and high-school
teachers on teaching a Computer Science 101 course utilizing computational think-
ing. The trainees came from all ranks of universities and top-ranking high schools.

The book is helpful to high-school students who are interested in taking a
computer science advanced placement course, for instance, AP Computer Science

Fig. 2 Three examples of problem-solving and creative expression. (Photos and graphics credits:
Haoming Qiu, Hongrui Guo, Siyue Li). (a) Sort a class of students: from an order by name to the
order by height. (b) What’s the area size of the panda? (c) Part of the Kitty Band

xii Introduction

Principles. The contents of this book significantly overlap with the five big ideas and
six computational thinking practices of AP Computer Science Principles.

For students who prefer to study by themselves, this textbook provides supple-
mentary material and answers to even-numbered exercises. The students do need a
computer to solve programming problems.

Structure of Contents

The contents of the book are organized into seven chapters and appendices. Chapters
1 and 2 introduce the computer science field. Chapters 3, 4, and 5 explain the core of
computational thinking. They elaborate how logic thinking, algorithmic thinking,
and systems thinking make computational problem-solving into correct, smart, and
practical processes. Chapter 6 extends computational thinking to networks.
Chapter 7 describes four practice projects. The project material is best used side
by side with other chapters, as illustrated in Table 1.

Chapter 1 overviews the computer science field and computational thinking. It
introduces the ABC features without: Automatic execution, Bit-accuracy, and Con-
structive abstraction. It summarizes the eight understandings within: Automatic
execution, Correctness, Universality, Effectiveness, compleXity, Abstraction,Mod-
ularity, and Seamless transition. The eight understandings can be shortened to an
acronym: Acu-Exams.

Note that automatic execution is a feature common to both perspectives within
and without, when appreciating computer science. Chapter 1 tantalizes students with
the intriguing question: Why and how trillions of instructions can be automatically
executed in a fraction of a second, sometimes across the globe, to produce correct
computational results? A partial answer is: abstractions in computer science are
automatically executable abstractions.

The chapter also highlights the impact of computer science on society by
presenting several sophisticated common senses of the field, from ICT industry to
digital economy, from Chomsky’s digital infinity to Boutang’s bees metaphor, and
from the wonder of exponentiation to wonder of cyberspace.

Chapter 2 introduces digital symbol manipulation as the core of computational
processes. Simple but increasingly sophisticated examples are used to learn concepts
such as numbers, characters, variables, arrays, strings, conditional, loop, von Neu-
mann computer, processor, memory, I/O devices, instructions, etc. All of these
concepts are viewed through the lens of digital symbol manipulation: data are
symbols, programs are symbols, computers are symbol-manipulation systems.

Chapter 3 studies logic thinking to appreciate how to make computational
processes correct. It introduces basic concepts of Boolean logic, including proposi-
tional logic and predicate logic. It introduces the Turing machine as a theoretical
computer for multi-step computational processes. Church-Turing Hypothesis and
Gödel’s incompleteness theorems are discussed to reveal the power and limitation of
computing. Accessible examples are used to explain the concepts.

Introduction xiii

Chapter 4 studies algorithmic thinking to appreciate how to make computational
processes smart. This includes smart ways to define, measure, design, and adapt
algorithms. After introducing the basic concepts of algorithm and algorithmic
complexity, this chapter uses some examples to explain the design and analysis of
algorithms. Discussed algorithmic concepts include divide-and-conquer, dynamic
programming, the greedy approach, randomization, hashing, sort, search, algorith-
mic complexity, and P versus NP.

Chapter 5 studies how systems thinking makes computational processes practical,
by discussing three key concepts: abstraction, modularization, and seamless transi-
tion. Elementary data abstractions and control abstractions are discussed here in one
place. Hardware and software concepts are introduced as systems modules in
increasing abstraction levels, from logic gates and memorizing devices, combina-
tional circuits, sequential circuits, to instruction pipelines and software stack. This
chapter also discusses four “laws” that make seamless execution possible: Yang’s
cycle principle, Postel’s robustness principle, von Neumann’s exhaustiveness prin-
ciple, and Amdahl’s law.

Chapter 6 extends computational thinking to networks, including the Internet and
the network of webpages. Two main knowledge thrusts, connectivity and protocol
stack, are discussed to introduce concepts and methods such as naming, topology,

Table 1 A sample course schedule for the Spring semester of the year 2020 at UCAS

Week
Lecture
Two classes per week

Project
Two classes per week

1 School delayed due to Covid-19

2 CS Overview

3 Symbol Manipulation

4 Symbol Manipulation

5 Logic Thinking

6 Logic Thinking Turing Adder

7 Logic Thinking Turing Adder

8 Algorithmic Thinking Turing Adder

9 Algorithmic Thinking Text Hider

10 Algorithmic Thinking Text Hider

11 Holiday break

12 Midterm Review Text Hider

13 Systems Thinking Human Sorter

14 Systems Thinking Human Sorter

15 Systems Thinking Human Sorter

16 Network Thinking Web Artifact

17 Network Thinking Web Artifact

18 Network Thinking Web Artifact

19 Term Review

20 Final Exam

xiv Introduction

packet switching, TCP/IP protocols, DNS, WWW, viral marketing, Metcalfe’s law,
and responsible computing.

Chapter 7 describes four practice projects which are an integral part of the course.
They are inspired by the US National Research Council’s characterization: “com-
puter science is the study of . . . abstract computers, . . . real computers, . . . and
applications of computers.” The Turing Adder project augments students’ under-
standing of abstract computer. The Human Sorter project invites students to design a
real computer. The Text Hider project represents a computer application. Finally, the
Personal Artifact project offers students an opportunity to demonstrate their capa-
bility of creative expression, by creating a dynamic webpage.

This chapter also reviews responsible computing, including code of conduct and
best practices for independent work, collaboration, and acknowledgment.

How to Use This Book?

Teaching and learning an introductory course of computer science must balance two
facts about the student community. First, many students do not have prior experience
in computer science. We polled the 2014–2018 classes of the CS101 course at the
University of Chinese Academy of Sciences, where each year there were about 340–
390 students in the class. The results show that over 90% of students had no prior
experience in CS or programming. For the 2014 and 2015 classes, over 6% of
students did not own a personal computer when they came to the university. We need
to make sure inexperienced but hard-working students can earn good grades.

Second, most students, both experienced and inexperienced, do get the hang of
introductory computer science quickly. We need to ensure that students still find
CS101 intellectually interesting, not a watered-down, boring course.

Based on our 6-year teaching experience, we offer the following suggestions:

• Normal learning with contents augmented by Bloom’s taxonomy.
• Utilizing Knuth’s Test to instantiate Bloom’s taxonomy for CS101.
• Focusing on the elementary and leaving space for experienced students.

This textbook can be used in a CS101 course in the normal way, with lectures,
homework exercises, projects, and exams. Some lecturers and students may find that
this textbook contains a lot of material for mind-active and hands-on learning. That
is, the book aims at the upper levels of Bloom’s taxonomy.

Shown in Fig. 1, Bloom’s taxonomy is a taxonomy of educational objectives first
proposed in 1956 and revised in 2001. It organizes six levels of educational
objectives into a pedagogic pyramid. We find that it is feasible and desirable to
aim at higher levels of Bloom’s taxonomy in a CS101 course.

A significant portion of this book is designed to enable lecturers and students to
rise from the basement level of “remember” to the top level of “create” in Bloom’s
taxonomy. For instance, after learning an adder, students may be asked to design a
never-discussed subtractor. The knowledge and capability needed are beyond simply

Introduction xv

memorizing. The Personal Artifact project asks a student to independently create a
dynamic webpage by the end of the semester. In doing so, the students learn how to
turn personal insights and creative ideas into computational artifacts. The book
provides a library of dozens of webpages created by past students and teaching
assistants. Students are enabled to create their webpages, learning by themselves
Web programming along the way, including the needed HTML, CSS, and JavaScript
knowledge, as well as proper code of conduct.

It was not until the Spring semester of the year 2020 that we realized that the
learning method we have practiced for 6 years can be summarized in one sentence:
utilize Knuth’s Test to instantiate Bloom’s taxonomy.

In an interview in February 2020, Donald Knuth stated beautifully an instantia-
tion of the “create” level in Bloom’s taxonomy for computer science education:

The ultimate test of whether I understand something is if I can explain it to a computer. I can
say something to you and you’ll nod your head, but I’m not sure that I explained it well. But
the computer doesn’t nod its head. It repeats back exactly what I tell it. In most of life, you
can bluff, but not with computers.

We call this “ultimate test” Knuth’s Test. It offers students a pedagogic tool to
check if they have learned a unit of knowledge or capability: see if they can explain it
to a computer. Running a program on a PC is an obvious way to perform Knuth’s
Test. Executing a computational process on a human-computer as a thought exper-
iment is another way. A student cannot bluff with either type of computer.

The above-suggested practice of teaching and learning could go out of hand, by
exposing students to too much material. Thus, we have the third suggestion:
focusing on the elementary and leaving space for experienced students. The contents
of the book have been purposely designed to focus on the elementary of computa-
tional thinking, such that the material can be covered in full in one semester. Material
targeting experienced or hungry students is explicitly marked.

For instance, although dozens of programming examples and exercises are
included, a student is required to write only 300 lines of code for Go programming.
The emphasis is on general ideas and methods of programming, not on Go-specific
syntax and semantics. When facing the new task of creating a dynamic webpage,
most students can quickly learn Web programming by themselves.

Suggested schedules for a 3-credit, 60-period course, and a 2-credit, 40-period
course are shown in Tables 2 and 3, respectively. Note that 40% of class time is
devoted to the projects for the 3-credit course, and 30% for the 2-credit course. A
homework assignment is handed out for each of the first six chapters.

Due to Covid-19, we had to conduct CS101 as an online course for the Spring
semester of 2020 (Table 1). The students did fine, comparing to previous classes.
However, the working time of lecturers and TAs increased by 40%. This was mainly
due to first-time overheads. Future online courses could be more efficient.

xvi Introduction

Table 2 Suggested schedule for a 3-credit course

Week
Lecture
Two classes per week

Project
Two classes per week

Due date
23:30 pm, Sunday

1 CS Overview

2 Symbol Manipulation Homework 1

3 Symbol Manipulation Homework 2

4 Logic Thinking

5 Logic Thinking Turing Adder

6 Logic Thinking Turing Adder Homework 3

7 Algorithmic Thinking Turing Adder Project 1

8 Algorithmic Thinking Text Hider

9 Algorithmic Thinking Text Hider Homework 4

10 Midterm Review Text Hider Project 2

11 Systems Thinking Human Sorter

12 Systems Thinking Human Sorter Homework 5

13 Systems Thinking Human Sorter Project 3

14 Network Thinking

15 Network Thinking Web Artifact

16 Network Thinking Web Artifact Homework 6

17 Term Review Web Artifact Project 4

18 Final Exam

Table 3 Suggested schedule for a 2-credit course

Week
Lecture
Two classes per week

Project
Two classes per week

Due date
23:30 pm, Sunday

1 CS Overview

2 Symbol Manipulation Homework 1

3 Symbol Manipulation Homework 2

4 Logic Thinking

5 Logic Thinking Turing Adder Homework 3

6 Algorithmic Thinking Turing Adder Project 1

7 Algorithmic Thinking Text Hider Homework 4

8 Midterm Review Text Hider Project 2

9 Systems Thinking

10 Systems Thinking Human Sorter Homework 5

11 Network Thinking Human Sorter Project 3

12 Network Thinking Homework 6

13 Term Review

14 Final Exam

Introduction xvii

Notations

Some widespread programming notations are used in this book: the camel notation,
the dot notation, the slash notation, the quotation marks, and notations for hexadec-
imal and Unicode values.

The camel notation is also called the camel case notation. It is used to denote
various names (e.g., variable or file names), such as MyPicture, studentsMap, and
doctoredAutumn. This practice writes the phrase of a name together with the first
letter of each word capitalized, resembling the humps of a camel. The first word may
all be in a small case.

Students may have already seen the dot notation used as a file extension, such as
myHW2.pdf, or in Web domain names such as www.ucas.edu.cn. The dot notation
is also used to denote the component of a program construct, such as the member of a
struct variable or the function in a program package. For instance, the notation

fmt.Println

calls the Println function in the fmt package. The dot notation

A.Key

refers to the key component in variable A, which has a data type of struct.
The slash (/) notation is used mainly to denote the path name of a file. For

instance, the following slash notation

/cs101/Prj2/ucas.bmp

denotes the full path name of a file, where the first slash denotes the root directory,
followed by the cs101 subdirectory, followed by the Prj2 sub-subdirectory, followed
by the real file ucas.bmp. The four entities are separated by three slashes.

The single quotation marks denote a character, e.g., ‘A’, ‘6’, and ‘?’. The double
quotation marks denote a character string, e.g., “Alan Turing”.

The 0x and 0X notations are used to denote hexadecimal numbers, such as 0x36,
0x1f, and 0X1F. Some programming systems differentiate these two notations for a
small case and a capital case. We do not differentiate them unless required.

The U+ notation denotes a Unicode value. For instance, the Chinese character
‘志’ and the Euro sign ‘€’ have Unicode encoding values of U+5FD7 and U+20AC,
respectively.

A 3-star notation, ‘***’, is used to mark material targeting experienced and
hungry students. Material for all students has no marking.

An Example ends with the notation ☶, the trigram symbol for the mountain in
Book of Change, which symbolizes “the end”. The following is an instance.

xviii Introduction

http://www.ucas.edu.cn

Example 1. (110.101)2 = (?)10
(110.101)2¼1�22+1�21+0�21+1�2�1+0�2�2+1�2�3¼4+2+0.5+0.125

¼ (6.625)10.
☶

Supplementary Material

The companion website cs101.ucas.edu.cn provides supplementary material for
(1) lecture and projects slides, (2) the source code of all programs, and (3) solutions
to even-numbered homework exercises, as well as other teaching and learning aids.

Acknowledgments

We are grateful to many people for feedback and encouragement. Students of classes
2014–2019 at the University of Chinese Academy of Sciences were the first batch of
practitioners of this book’s material. We are happy to see that over 90% of graduates
of these classes go on to pursue advanced degrees.

We are indebted to Professor Donald Knuth of Stanford University for his
fundamental inspiration. We adopt his recent advice, called Knuth’s Test in this
book, as a pedagogic tool. We thank Professor Jeanette Wing of Columbia Univer-
sity for explaining her view on computational thinking. We are grateful to Professor
Xiaomeng Xu of Idaho State University for introducing us to Bloom’s taxonomy.

Professor Xiaoming Li of Peking University has provided persistent encourage-
ment and feedback. Professors Guoliang Chen and Lian Li, chairs of the Education
Steer Committee on Computer Fundamentals of China’s Ministry of Education,
tirelessly lead the computational thinking reform in China for over 10 years. The
many workshops they chaired helped the design and development of the book’s
material. Professor Xiaoming Sun of the University of Chinese Academy of Sci-
ences is a main designer of the CS101 course at UCAS. Hongrui Guo and Zishu Yu,
our teaching assistants, have helped develop the material of the project.

This book uses material from several institutions, including company names,
product names, logos, and images. We acknowledge that all such material is the
property of the owner. All images are reproduced with permissions. The institutions
include ACM, Amazon.com, AMD, Apple, AT&T, Baidu, China Computer Feder-
ation (CCF), Cisco, the College Board, Facebook, Google, RedHat, Huawei, IBM,
IEEE-Computer Society, Intel, Lenovo, LinkedIn, Microsoft, Oracle, Sugon,
Tencent, the World Wide Web Consortium (W3C), and Xiaomi. ACM and IEEE-
CS are international societies of computer professionals. CCF is the society of
computer professionals in China with over 60,000 members.

Introduction xix

http://cs101.ucas.edu.cn
http://amazon.com

Special thanks are due to the open-source software community. This book uses
the following open-source software: the Linux operating system, the Go program-
ming language, the VirtualBox tool, the Visual Studio Code (VSCode) editor, and
Web server and browser software.

We acknowledge the support of the Innovation Institute of Network Computing,
Chinese Academy of Science, where research and education are integrated to enable
innovation.

We thank Dr. Celine Chang, Veena Perumal, and Suganthi Tamijarassou of
Springer Nature for making a smooth publication process.

Bibliographic Notes

Quotations from Donald Knuth are from an interview in February of 2020 byQuanta
Magazine [1]. Bloom’s taxonomy of educational objectives was presented in [2] and
updated in [3]. Computational thinking is discussed in [4–6]. Different ways to
introduce computer science are presented in [7–11].

References

1. D’Agostino S (2020) The computer scientist who can’t stop telling stories.
Quanta Magazine. https://www.quantamagazine.org/computer-scientist-
donald-knuth-cant-stop-telling-stories-20200416

2. Bloom BS, Engelhart MD, Furst EJ et al (1956) Taxonomy of educational
objectives: Cognitive domain. Longman Group

3. Anderson LW, Krathwohl DR, Airasian PW, Cruikshank KA, Mayer RE,
Pintrich PR, Raths J, Wittrock MC (2001) A taxonomy for learning, teaching,
and assessing: a revision of Bloom’s taxonomy of educational objectives,
abridged edition. Longman, White Plains

4. Wing JM (2006) Computational thinking. Commun ACM 49(3):33–35
5. US National Research Council (2004) Computer science: reflections on the

field, reflections from the field. National Academies Press, Washington, DC
6. College Board (2020) AP computer science principles course and exam descrip-

tion. https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-
course-and-exam-description.pdf

7. Page D, Smart N (2014) What is computer science?: An information security
perspective. Springer, Switzerland

8. Schneider GM, Gersting J (2018) Invitation to computer science (8th edn).
Cengage Learning, Boston

9. Dale N, Lewis J (2019) Computer science illuminated (7th edn). Jones &
Bartlett Learning, Burlington

xx Introduction

https://www.quantamagazine.org/computer-scientist-donald-knuth-cant-stop-telling-stories-20200416
https://www.quantamagazine.org/computer-scientist-donald-knuth-cant-stop-telling-stories-20200416
https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course-and-exam-description.pdf
https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course-and-exam-description.pdf

10. Brookshear G, Brylow D (2019) Computer science: an overview (13th edn).
Pearson, London

11. Alvarado C, Dodds Z, Kuenning G, Libeskind-Hadas R (2019) CS for all: an
introduction to computer science using Python. Franklin, Beedle & Associates
Inc., Wilsonville

Introduction xxi

Contents

1 Overview of Computer Science . 1
1.1 Computational Processes in Problem Solving 1
1.2 Characteristics of Computational Thinking 8

1.2.1 The Three Features Without . 9
1.2.2 The Eight Understandings Within 14
1.2.3 A Research Viewpoint of Computer Science 17

1.3 Relation of Computer Science to Society 19
1.3.1 Computer Science Supports Information Society 19
1.3.2 Computer Science Shows Three Wonders 22
1.3.3 Computer Science Has Three Persuasions 25
1.3.4 Computational Thinking Is a Symphony 30

1.4 Exercises . 31
1.5 Bibliographic Notes . 37
References . 38

2 Processes of Digital Symbol Manipulation . 41
2.1 Data as Symbols . 41

2.1.1 Conversions Between Binary and Decimal Number
Representations . 43

2.1.2 Representing Integers in Two’s Complement
Representation . 46

2.1.3 Representing English Characters: The ASCII
Characters . 47

2.2 Programs as Symbols . 49
2.2.1 A Number of Simple Programs . 49
2.2.2 Programs Relating Character Strings to Integers 51
2.2.3 Good Programming Practices . 56
2.2.4 Using Dynamic Programing to Compute Fibonacci

Number F(50) . 58

2.3 Computer as a Symbol-Manipulation System 60
2.3.1 A Glimpse Inside a Computer . 62
2.3.2 A Step-By-Step Process on a von Neumann Computer 63

2.4 Exercises . 75
2.5 Bibliographic Notes . 80
References . 80

3 Logic Thinking . 81
3.1 Boolean Logic . 82

3.1.1 Propositional Logic . 83
3.1.2 Predicative Logic . 98

3.2 Automata and Turing Machines . 104
3.2.1 Mechanical Theorem Proving . 104
3.2.2 Automata . 106
3.2.3 Computation on Turing Machine 107

3.3 Power and Limitation of Computing . 115
3.3.1 Church-Turing Hypothesis . 116
3.3.2 (***) Incomputable Problems and Paradoxes 117
3.3.3 (***) Gödel’s Incompleteness Theorems 120

3.4 Exercises . 124
3.5 Bibliographic Notes . 128
References . 129

4 Algorithmic Thinking . 131
4.1 What Are Algorithms . 132

4.1.1 Knuth’s Characterization of Algorithm 132
4.1.2 The Sorting Problem and the Bubble Sort Algorithm 134
4.1.3 Asymptotic Notations . 136

4.2 Divide-and-Conquer Algorithms . 138
4.2.1 The Insertion Sort Algorithm . 139
4.2.2 The Merge Sort Algorithm . 140
4.2.3 Single Factor Optimization . 143
4.2.4 Integer Multiplication . 146
4.2.5 Matrix Multiplication . 148
4.2.6 Summarization . 150

4.3 Other Examples of Interesting Algorithms 151
4.3.1 Dynamic Programming . 151
4.3.2 (***) The Greedy Strategy . 154
4.3.3 The Randomization Strategy . 160
4.3.4 (***) Search Algorithms . 163

4.4 P vs. NP . 174
4.4.1 Time Complexity . 174
4.4.2 P and NP . 175
4.4.3 (***) Examples in the NP Class . 177

4.5 Exercises . 178
4.6 Bibliographic Notes . 181
References . 182

xxiv Contents

5 Systems Thinking . 183
5.1 Systems Thinking Has Three Objectives 184

5.1.1 Being Thorough . 185
5.1.2 Being Systematic . 188
5.1.3 Coping with Complexity . 190

5.2 Abstraction . 191
5.2.1 Three Properties of Abstraction: COG 191
5.2.2 Data Abstractions . 192
5.2.3 Control Abstractions . 212

5.3 Modularization . 214
5.3.1 Combinational Circuits . 214
5.3.2 Sequential Circuits . 217
5.3.3 Instruction Set and Instruction Pipeline 224
5.3.4 Software Stack on a von Neumann Computer 227

5.4 Seamless Transition . 228
5.4.1 Yang’s Cycle Principle . 229
5.4.2 Postel’s Robustness Principle . 231
5.4.3 von Neumann’s Exhaustiveness Principle 232
5.4.4 (***) Amdahl’s Law . 234

5.5 Exercises . 241
5.6 Bibliographic Notes . 250
References . 251

6 Network Thinking . 253
6.1 Network Terms . 254
6.2 Connectivity . 256

6.2.1 Naming . 256
6.2.2 Network Topology . 261

6.3 Protocol Stack . 263
6.3.1 The Web over Internet Stack . 263
6.3.2 Elementary Web Programming . 269

6.4 Network Laws and Responsible Computing 274
6.4.1 Bandwidth, Latency, and User Experience 275
6.4.2 Network Effect . 277
6.4.3 Responsible Computing . 280

6.5 Exercises . 288
6.6 Bibliographic Notes . 296
References . 297

7 Projects . 299
7.1 Turing Adder: Turing Machine for Serial Additions 300
7.2 Text Hider: Program to Hide Text in Picture 301
7.3 Human Sorter: Team Computer for Quicksort 303
7.4 Personal Artifact: Web Page of Creative Expression 305

Contents xxv

8 Appendices . 307
8.1 Multiples and Fractions . 307
8.2 Programming Basics . 308
8.3 Pointers to Supplementary Material . 309

Index . 313

xxvi Contents

Chapter 1
Overview of Computer Science

The ultimate test of whether I understand something is if I can
explain it to a computer. . . . In most of life, you can bluff, but
not with computers.
—Donald Knuth, 2020

Computer science is an academic discipline that studies computational processes in
solving problems in scientific, engineering, economic and social domains. Compu-
tational thinking is the way of thinking by computer scientists, which underlies the
bodies of knowledge in the computer science discipline. Computer science provides
an intellectual foundation supporting the information technology industry, the
worldwide digital economy and the information society. It exhibits three wonders
and three persuasions while permeating modern civilizations.

In this chapter, students will see and use a number of small computer programs.
They will start writing programs in Chap. 2.

1.1 Computational Processes in Problem Solving

Computer science studies computational processes, i.e., processes of information
transformation. It differs from fields of natural sciences such as Physics, Chemistry,
or Biology, which mainly study processes of matter and energy transformations.

A computational process is a problem-solving process of information transfor-
mation, via a sequence of digital symbol manipulation steps. Computational pro-
cesses often manifest as automatic executions of programs on computer systems.

A binary digit (bit) takes on a value of 0 or 1. A digital symbol is any notation
that is representable as one or more bits, to denote any concrete or abstract entity.
Manipulation is a sequence of operation steps on digital symbols, where the length
of the sequence can be one or many. Operation steps are also called operations.

An algorithm is a finite set of rules specifying a sequence of operations on digital
symbols to solve a problem. A program is an expression of an algorithm in a
computer language, such as the Go programming language. A program segment,

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
Z. Xu, J. Zhang, Computational Thinking: A Perspective on Computer Science,
https://doi.org/10.1007/978-981-16-3848-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3848-0_1&domain=pdf
https://doi.org/10.1007/978-981-16-3848-0_1#DOI

part or whole, is called code. A group of digital symbols is called data. An algorithm
often produces output data from input data.

A program is expressed in a programming language as a group of digital symbols.
Thus, programs can be viewed as data. When programs and data are stored in a
computer in a non-volatile way (i.e., data still exist even when the power is turned
off), they are called files. We store program files and data files in a computer.

As illustrated in Fig. 1.1, a computational process in problem solving involves
four aspects, abbreviated as PEPS for Problem, Encoding, Computation Process,
and Computer System. Cyberspace refers to the right part of Fig. 1.1, namely,
computer systems plus the computational processes executing on them.

• Problem. We study computational processes to solve problems in target
domains, i.e., fields of applications. Computer science can be used to help solve
problems in many fields, including mathematics, natural sciences, social sciences,
engineering and technology, economics and business, and even arts and human-
ities fields. We will elaborate why computer science permeates when discussing
digital infinity and computational lens in Sect. 1.3.

• Encoding. Domain problems are converted to computational problems to be
solved in the cyberspace, which consists of computational processes automati-
cally executing on computer systems. This converting process is called encoding
or modeling, often done by humans. For a specific domain problem, encoding
generates a computational problem and an expected computational solution,
manifesting as a model of the problem in cyberspace and an algorithm to solve
the problem. Encoding often determines the accuracy and precision of the
solution. Note that the encoding process is actually a bidirectional process. It is
common practice that humans are ultimately responsible for converting the
domain problem in the target domain to the computational problem in the
cyberspace, and then converting the solution in the cyberspace back to the
solution in the target domain. There is much opportunity for human’s imagination
and creativity to play out in this bidirectional mapping, including formulating the
problems, designing approaches and solutions, deciding human-computer sym-
biosis and interaction, and iterative optimization.

Encoding
(Modeling)

Scientific,
Engineering,

Societal Problems

Computational
Processes

Computing
Systems

Target Domain Cyberspace

Fig. 1.1 Computational processes in problem solving: the PEPS model

2 1 Overview of Computer Science

• Computational Process. A computational process often manifests as a running
computer program, which embodies the human designed model and algorithm to
solve the problem. The program specifies the computational process of informa-
tion transformation via step-by-step digital symbol manipulations. Program-
ming is the activity to design and develop a program. To obtain the final
effective and efficient computational process, we may need many iterations of
encoding, programming and execution, even when the underlying computer
system is given. Encoding, designing, and programming can be combined into
one process in practice, especially when the problem is simple or small.

• Computer System. The computer system may be in many forms, abstract or real.
The examples, exercises and practice projects in this book mostly use two types
of real computer systems: the student’s laptop computer and the World Wide
Web. The Human Sorter project creates a real computer consisting of humans.

Example 1.1. Computing a Small Fibonacci Number
A problem can be solved by different encodings. Figure 1.2 illustrates two processes
in computing the 10th Fibonacci number F(10): one by manual computing and the
other by a computer program. Contrasting these processes highlights the importance
of automatically executed computational processes.

Problem. The problem is to find the 10th Fibonacci number F(10) in the domain
of mathematics. Note that the mathematical definition of Fibonacci numbers is:

F(0)¼0, F(1)¼1; F(n)¼F(n-1)+F(n-2) when n>1.

A student may use the mathematical definition to manually compute the first
11 Fibonacci numbers using a pen and paper. Given F(0)¼0, F(1)¼1, one has

F(2)¼F(1)+F(0)¼1+0¼1,
F(3)¼F(2)+F(1)¼1+1¼2,

Encoding
(Modeling)

Computational
process produced by
program fib-10.go

Student’s
laptop computer

Manual process of
computing F(10)

Student using pencil + paper

Domain of Mathematics Cyberspace

Encoding
(Modeling)Find the 10th

Fibonacci
Number

Fig. 1.2 Two processes for computing the 10th Fibonacci number F(10)

1.1 Computational Processes in Problem Solving 3

F(4)¼F(3)+F(2)¼2+1¼3,
F(5)¼F(4)+F(3)¼3+2¼5,
F(6)¼F(5)+F(4)¼5+3¼8,
F(7)¼F(6)+F(5)¼8+5¼13,
F(8)¼F(7)+F(6)¼13+8¼21,
F(9)¼F(8)+F(7)¼21+13¼34,
F(10)¼F(9)+F(8)¼34+21¼55.

This manual calculation process is tedious and time consuming. For a small n,
e.g., n¼10, a student may manually compute F(n) in a few seconds or minutes. But
how about finding F(50) or F(5000000000)? Fortunately, step-by-step computa-
tional processes that are tedious and time consuming for humans are often good
candidates for computer processing. Figure 1.2 shows another process for computing
F(n), which is a process of information transformation via step-by-step digital
symbol manipulations. This cyberspace solution is further elaborated in Fig. 1.3.

Encoding. In the cyberspace, the problem is to compute F(10) automatically by a
computer, not by manual calculation. Its solution is encoded as a recursive algorithm
directly from the mathematical definition, as shown in Fig. 1.3a. It is a recursive

(a)

(b)

Output F(10) // n and F(n) are natural numbers
where F(n) is defined as

> go build fib -10.go
> ./fib-10
F(10)= 55
>

package main // Program setup
import "fmt"
func main() {

fmt.Println("F(10)=", fibonacci(10)) // Output F(10)
}
func fibonacci(n int) int { // fibonacci(10)

if n == 0 || n == 1 { // If n=0 OR n=1, (|| means OR)
return n // return n and exit

} // Recursively call
// fibonacci(9) and fibonacci(8)

}

(c)

if (n=0 or n=1) then F(n)=n else F(n)=F(n-1)+F(n-2)

return fibonacci(n-1)+fibonacci(n-2)

Fig. 1.3 Computational process for finding the 10th Fibonacci number F(10). Texts after a double
slash (//) are comments to explain the code. (a) An algorithm to find F(10) directly from the
mathematical definition. (b) A Go program fib-10.go that implements the algorithm. (c) Compile
fib-10.go and execute fib-10 to produce the output

4 1 Overview of Computer Science

algorithm because the function F calls itself recursively in F(n)¼F(n-1)+F(n-2). Note
that this recursive algorithm in cyberspace is different from the algorithm of the
manual calculation process in the mathematics domain.

Computational Process. The computational process is embodied in the Go
program of Fig. 1.3b, which implements the algorithm in Fig. 1.3a. This is a
straightforward implementation, almost literally copying Fig. 1.3a into the Go
programming language syntax. Each line of the program code is called a statement.
Recall that we use code to refer to a segment of a program. The first three statements
are to set up the program. The function name “F” is replaced by a longer but more
informative name “fibonacci”. The statement

fmt.Println("F(10)=", fibonacci(10))

is to Output F(10), that is, to print out the result value of F(10). The next 6 lines of
code form a subprogram, called a function, which does the actual computation of
Fibonacci numbers. Given an integer n as the input parameter, the function generates
an integer output fibonacci(n) by implementing the algorithm in Fig. 1.3a.

The computer screen outputs are shown in Fig. 1.3c. To summarize, the actions of
encoding, programming, and entering commands are done by the human user, but
actual compilation and program execution are done by the computer. This way of
dividing labor is called human-computer symbiosis.

• Human: convert the math problem to the Go program fib-10.go.
• Human: enter the compile command “go build fib-10.go”.
• Computer: execute command “go build fib-10.go”, to compile the high-level

language program file fib-10.go into an executable program file fib-10. Com-
pilation refers to converting a high-level language program to an executable
program, also called a machine code program.

• Human: enter the program execution command “./fib-10”.
• Computer: execute command “./fib-10”, to execute program fib-10 and produce

screen output “F(10)¼55”.

Computer System. In this example, the computer is the student’s laptop com-
puter supporting the Go programming language and the Linux operating system.

☶

The above simple example already reveals the rich meaning of the concepts of
“computational process in problem solving”, as well as of “step-by-step digital
symbol manipulation”. After encoding, the mathematical problem is converted
into a computational problem and a solution. The algorithm in Fig. 1.3a, the Go
program in Fig. 1.3b, and the compilation and execution processes in Fig. 1.3c, all
represent processes of information transformation via digital symbol manipulations.

It is obvious that the final result F(10)¼ 55 is a combination of digital symbols. It
may not be as obvious that the Go program fib-10.go and the executable program file
fib-10 are also digital symbols. Manipulation operations include steps of

1.1 Computational Processes in Problem Solving 5

programming, compilation, machine code execution, as well as more detailed
operations described inside the Go program of Fig. 1.3b.

Why do we go this roundabout way of (1) writing a program fib-10.go, (2) com-
piling fib-10.go into fib-10, and (3) executing fib-10? Why don’t we simply write
and execute fib-10?

The computer only understands and executes a machine code program, such as
fib-10, which consists of a sequence of 0’s and 1’s. When displaying fib-10 on the
computer screen, one sees the scrambled result shown in Fig. 1.4. It is difficult for
human to understand a machine code program such as fib-10. For this reason, a
machine code program such as fib-10 is also called a low-level language program.

It is easier for the human to understand a high-level language program. However,
the computer cannot directly understand and execute a high-level language program,
such as fib-10.go. A compiler is needed to convert a high-level language program
into a machine code program that is directly executable on a machine.

During this compilation process, the compiler also checks for and reports various
compile-time errors, such as syntactic errors in the high-level language program
fib-10.go. However, runtime errors may still exist in the compiled machine code
fib-10, even when no error is reported during the compilation process. Bugs are the
term used to refer to all errors of a program, including compile-time errors and
runtime errors.

Refer to Fig. 1.3c. The command “go build fib-10.go” directly execute on a
computer but looks like a high-level language statement. In fact, commands are
high-level language programs called shell scripts. What happens is that when human
enters a command, a software tool, called interpreter, works behind the scene to
automatically interpret (i.e., convert the command into machine code and then
execute, one statement at a time). The computer actually executes machine code of

Fig. 1.4 Screen display of the machine code fib-10: scrambled symbols

6 1 Overview of Computer Science

the command, not the command itself. An operating system such as Linux normally
provides a command interpreter called shell.

Computing is more than automatic execution of arithmetic operations. Three
cases below are used to demonstrate the power and beauty of computational pro-
cesses in augmenting other disciplines, showing that computational thinking can
change the way of thinking in solving problems by bringing in new values.

Step-by-step computing is powerful. The basic idea in Example 1.1 looks trivial:
step by step computing of the sequence of Fibonacci numbers. However, Fibonacci
sequence was a key innovative idea enabling scientists to solve Hilbert’s 10th
problem, an important mathematics problem asked by David Hilbert in 1900. The
problem is to find an algorithm to determine whether any given Diophantine
equation has an integer solution. The answer, provided in 1970, is No. It is interest-
ing to note that this 70-year work is a multidisciplinary research, where the main
result is called the MRDP Theorem, after four people: Yuri Matiyasevich, a Russian
mathematician; Julia Robinson, the first female President of the American Mathe-
matical Society; Martin Davis, a computer scientist; and Hilary Putnam, a past
President of the American Philosophical Association.

Augment the problem. Computational thinking can extend the scope of problems,
enabling people to solve problems traditionally intractable. A case in point is to
compute the area of an irregular shape. Mathematics in primary and high schools
enable students to compute the area of a regular shape enclosed by straight lines and
circles. College Mathematics goes further by enabling students to compute the area
of a curly shape enclosed by curves of two or more functions. For instance, the size
of the area in Fig. 1.5a is the sum of a rectangle and a semicircle, which is
W � H + (W/2)2 � π/2. The size of the area enclosed by the straight line y ¼ 1.1 � x
and the square curve y ¼ 0.11 � x2 in Fig. 1.5b is

R 10
0 1:1x� 0:11x2ð Þdx.

However, such school or college math is inadequate to handle the task of
computing the area of the panda picture in Fig. 1.5c, which is an example of irregular
shapes. Computer science offers new capabilities to routinely compute such irregular
areas. A specific method called Monte Carlo simulation is shown in the Personal

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11 12

(a) (b) (c)

W (width)

H (height)

Fig. 1.5 Computer science enables us to compute sizes of irregular shapes. (a) School Mathematics
Regular shapes. (b) College Mathematics Curly shapes. (c) Computer Science Irregular shapes

1.1 Computational Processes in Problem Solving 7

Artifact project. The same idea can extend to multiple dimensions, and can be used
to compute volume, mass, energy, number of particles, etc.

Change approaches to the problem. Computational thinking can inspire radically
new approaches to domain problems. A case in point is Human Whole-Genome
Shotgun Sequencing. The complete sequencing of the human genome is a landmark
endeavor in biology and health science. In 1990, the United States government
officially started the Human Genome Project (HGP), and later set the goal of
sequencing the human genome by 2005 at US$1 per chemical base pair. That is,
the total dollar and time costs would be $3 billion and 15 years. However, by 1998,
only 5% of the human genome were sequenced.

In 1997, Gene Myers and Jim Weber proposed to attack the human genome
sequencing problem by a radical approach, called Whole-Genome Shotgun
Sequencing. The idea is to break down the DNA sequence into random fragments,
sequence those fragments, and then assemble them in the correct genome order. This
approach was used to successfully sequence the genome of H. influenzae bacterium
of 1.8 million base pairs. Myers andWeber projected the approach could apply to the
much larger human genome, because we could heavily utilize effective algorithms
and much faster computing technology. The established community rejected their
proposal, judging the method would fail for the human genome with 3 billion base
pairs.

In 1998 Myers joined a newly founded company called Celera Genomics to
realize his computation-heavy Human Whole-Genome Shotgun Sequencing
approach. His team developed new algorithms and more than 500 thousand lines
of code for a 7000-processor parallel computer. This approach proved to be effec-
tive. In 9 months from September 1999 to June 2000, Celera finished a rough draft
sequence of the human genome. On June 26, 2000, Celera joined other scientists, US
President Bill Clinton and British Prime Minister Tony Blair to announce the
completion of an initial sequencing of the human genome.

1.2 Characteristics of Computational Thinking

Computational thinking is the way of thinking by computer scientists, which under-
lies and manifests as the bodies of knowledge in the computer science discipline.
When viewed from the perspective of a way of thinking, computer science and
computational thinking are synonymous.

Computational thinking can be characterized from three angles: (1) the three
features without, (2) the eight understandings within, and (3) the research view of
computer science. They are not separate things but different perspectives. Compu-
tational thinking is the synergy of all these perspectives, similar to a symphony
played on multiple music instruments.

8 1 Overview of Computer Science

1.2.1 The Three Features Without

When viewed from the outside, namely, from the computer user’s perspective,
computer science exhibits three features distinct from other fields, called the ABC
features: Automatic execution, Bit accuracy, and Constructive abstraction. The
ABC features are listed in Table 1.1 with examples and counterexamples.

Automatic execution is easy to understand. Computer science targets those
bodies of knowledge (whether they are theory, hardware, or software) which enable
computational processes to be automatically executed on computers. That is why
computer science emphasizes exact, step-by-step processes. Only such processes can
be understood by computers, thus amiable to mechanic, step-by-step automatic
execution. Even for human-in-the-loop processes, computational thinking will try
to make them largely automatic and seamless.

This feature can be seen by comparing the two scenarios in Table 1.1: (1) com-
puting the 10th Fibonacci number F(10) by human using pen and paper, where each
step needs human to manually operate; and (2) computing F(10) by running the
fib-10.go program, where the computational process is executed automatically on a
computer. The second scenario is much faster, especially when the problem is to
compute a larger Fibonacci number such as F(50), F(5000) or F(5000000).

Example 1.2. Computing Larger Fibonacci Numbers F(50) and F(100)
The manual calculation process of Fibonacci numbers in Example 1.1 is tedious and
slow. This becomes obvious if students are asked to manually compute a larger
Fibonacci number, such as to compute F(50). In contrast, automatic execution on a
computer allows us to compute F(50) easily. We only need to slightly modify fib-10.
go by changing 10 to 50, and then compile fib-50.go and execute, to get F(50)¼
12586269025 in a few minutes. How about computing F(100)? Repeat the above
programming-compilation-execution processes by changing 10 to 100. This will
reveal two caveats of automatically executed computational processes: an apparently

Table 1.1 The ABC features at a glance

Feature Example Counter example

Automatic execution of a computa-
tional process on a computer

Computing the 10th
Fibonacci number by
running fib-10.go

Computing the 10th Fibonacci
number by human using pen
and paper

Bit accuracy: a computational pro-
cess is accurate to every bit

Processing scientific
experimental data by a
computer

An experiment judged by sta-
tistically significant result
(P-value <0.05)

Constructive abstraction: to form a
general entity from individual
instances by smartly composing a
group of more primitive entities

The von Neumann
model abstracting many
real computers.
A program to find
Fibonacci numbers by
dynamic programming

A human’s feeling of happi-
ness
A damaged binary code file
for the same Go program,
consisting of gibberish bits

1.2 Characteristics of Computational Thinking 9

correct computational process could (1) become terribly slow and (2) produce
incorrect results. The moral: being automatic is not enough.

☶

Bit accuracy is also intuitive. Any scientific field needs its academic rigor by
pursuing accuracy and precision. Computer science pursues bit accuracy: any
computational process is accurate and precise up to every bit. Here bit is short for
binary digit, the smallest digital symbol which has a value of 0 or 1.

A counterexample of bit-accuracy is shown in Table 1.1. Scientific experiments
have requirements of accuracy and precision according to the standards and best
practices of their domains. For instance, we may see expressions such as “experi-
ments results are statistically significant when the p-value is less than 0.05”, “the
error is no more than 3 Angstrom (Å)”, and “the results are precise up to four digits
after the decimal point”. All of these are not bit accurate.

Computer science works complementarily with these domains by guaranteeing
bit accuracy when processing experimental data, doing simulation, or conducting
theoretical reasoning, while each domain uses its own degree of accuracy and
precision. In other words, bit accuracy and domain accuracy work hand in hand.

Example 1.3. Using Binet’s Formula to Compute Larger Fibonacci Numbers
We can use a closed form mathematical formula to make the computation of F(n) faster.

We utilize the so called Binet’s formula F nð Þ ¼ φn� 1�φð Þnffiffi
5

p , where φ ¼ 1þ ffiffi
5

p
2 is the

golden ratio. Note that this formula involves real numbers such as
ffiffiffi
5

p
and 1þ ffiffi

5
p
2 . Let us

use this formula to compute F(50), F(100), and F(500), and see what happens. The
revised computational process using a new program fib.binet-50.go is shown in Fig. 1.6.

This fib.binet-50.go program can be automatically executed, and is indeed much
faster than fibonacci-50.go. However, it does not produce the exact integer results,
but only approximate results represented as real numbers. To easily see the differ-
ences, we list below the exact integer results and the corresponding approximate
results for F(50), F(100), and F(500). Exact results are in boldface.

F(50) ¼ 1.2586269024999998e+10 ¼ 1258 6269 024.9 99998

F(50) ¼ 1258 6269 025
F(100) ¼ 3.542 2484 8179 2618 e+20 ¼ 3542 2484 8179 2618 00000

F(100) ¼ 3542 2484 8179 2619 15075
F(500) ¼ 1.3942322456169767e+104

F(500) ¼ 1394 2322 4561 6976 7000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000

F(500) ¼ 1394 2322 4561 6978 8013 9724 3828 7040 7283 9500 7025 6587 6973 0726 4108
9629 4832 5571 6228 6329 0691 5576 5887 6222 5212 94125

10 1 Overview of Computer Science

Since Binet’s formula involves real numbers, the fib.binet-50.go program in
Fig. 1.6 utilizes 64-bit floating-point numbers (computer representation of real
numbers) and the system-provided “math” library. Given an integer number n as
input, the fibonacci function returns a 64-bit floating-point number as output.

The value of the returned number is φn� 1�φð Þnffiffi
5

p , which in Go notation is:

(math.Pow(phi,float64(n))-math.Pow((1-phi),float64(n)))/math.Sqrt(5)

in Fig. 1.6b, where the power function math.Pow(a, b) returns value ab, and float64
(n) returns value of integer n in 64-bit floating-point number representation.

Program fib.binet-50.go computes Fibonacci numbers using floating-point num-
bers. Some precision is lost during the problem encoding stage. But the fib.binet-50.
go program itself is still bit accurate in that all operations are accurate up to every bit

Output F(50) // n and F(n) are real numbers

where
−(1−φ)√5 , and

1+√52 is the golden ratio.

> go build fib.binet-50.go
> ./ fib.binet-50
F(50)= 1.2586269024999998e+10
>

package main
import "fmt"
import "math" // utilize the math library
func main() {

fmt.Println("F(50)=", fibonacci(50))
}
func fibonacci(n int) float64 {

sqrt5 := math.Sqrt(5) // assign the square root of 5 to sqrt5
phi := (1+sqrt5)/2 // assign the golden ratio to phi
return (math.Pow(phi,float64(n))-math.Pow((1-phi),float64(n)))/sqrt5

}

(a)

(b)

(c)

() = =

Fig. 1.6 Using Binet’s formula to compute the 50th Fibonacci number F(50). (a) An algorithm to
find F(50) directly from Binet’s formula. (b) A Go program fib.binet-50.go that implements the
algorithm. (c) Compile fib.binet-50.go and execute fib.binet-50 to produce the output

1.2 Characteristics of Computational Thinking 11

of the floating-point numbers involved. For instance, F(100)¼F(99)+F(98) is com-
puted as follows.

F(98)¼ 1.353 0185 2344 7067 e+20 ¼ 1353 0185 2344 7067 00000
F(99)¼ 2.189 2299 5834 55514 e+20¼ 2189 2299 5834 5551 40000
F(100)¼3.542 2484 8179 2618 e+20¼ 3542 2484 8179 2618 00000

☶

Example 1.4. Caryl Rusbult’s Investment Model of Relationship
Scientific progress can be made without mathematical exactness or bit accuracy.
Sometimes it is meaningful just to establish that factor A is positively (or negatively)
related to factor B, when investigating a phenomenon involving factors A and B. Let
us consider an example in psychology.

The domain problem has to do with domestic violence: why does a spouse being
battered not leave an abusive relationship but stay committed to marriage? Professor
Caryl Rusbult proposed a theory of investment model for close relationship:

Commitment / Satisfaction� Investmentð Þ=Alternative

which can partially answer this question. A spouse’s commitment to marriage is
positively related to satisfaction and investment, but negatively related to alterna-
tives. A battered spouse stays in an abusive relationship, not due to marriage
satisfaction, but because she/he has invested heavily (e.g., having children) or has
poor alternatives (e.g., without independent income).

Rusbult’s investment model is not mathematically exact or bit accurate, but it is
indeed a scientific progress, an inspirational theory which can lead to social policies
and guides for individual actions. Computing and mathematics can be used to help
test whether real data show that commitment is related positively to satisfaction and
investment, but negatively to alternatives.

Doman scientists, such as psychologists, utilize their professional expertise and
domain knowledge to advance their fields and contribute to society. Computer
scientists complement their efforts by offering mental tools and computing hardware
and software that feature automatically executed, bit-accurate, constructive abstrac-
tions of information transformation.

☶

Constructive abstraction can be less intuitive. The confusion is partly due to the
fact that the word “abstraction” refers to both an action and its outcome. That is,
abstraction (the action) is the process of producing an abstraction (the outcome),
which captures the essential aspect of an entity while ignores irrelevant aspects. All
scientific disciplines have abstractions, but computer science emphasizes construc-
tive, automatically executed abstractions of information transformation.

Constructive abstraction has three layers of meaning.

12 1 Overview of Computer Science

• The first is abstraction, namely, to abstract from concrete instances to the general
concept. To quote from the Webster Dictionary: abstraction is “to form universal
representations of the properties of distinct objects”.

• The second layer of meaning is constructive, in that the resulting abstraction (the
general concept) is constructive, which means that it is a step-by-step integration
of more primitive symbols and operations.

• The third layer of meaning is smart construction. Computer science strives to
understand the world and smartly construct abstractions based on such under-
standings. That is, computer science strives for smart constructions, not ad hoc,
arbitrary actions or processes, although sometimes computational processes may
use brute-force actions (e.g., exhaustive enumeration) and seemingly arbitrary
random operations (e.g., randomly picking a number).

Refer to Table 1.1. The von Neumann model of computer says that a computer is
comprised of a processor, a memory, and one or more input-output devices. It is an
abstraction of many real computers, such as the student’s laptop computer. It is
constructive because a computer is composed of three more primitive parts in a
unique way. The three primitive parts are processor, memory, and input-output
devices. More details of the von Neumann model will be discussed in Chap. 2.

The concept of happiness is an abstraction of many individuals’ happy feelings,
but it is not constructive in that it is not a step-by-step integration of more primitive
things. It is an abstraction of the first layer meaning but not of the second layer.

As an example of smart construction, we mention in Table 1.1 a Go program for
computing Fibonacci numbers that utilizes a technique called dynamic program-
ming. As discussed in Example 1.5 below, this program fib.dp-50.go is smarter and
much faster than the program fib-50.go in Example 1.2.

In contrast, the binary executable file compiled from the same Go program, when
damaged by destroying some bits, is not smartly constructive anymore. In fact, it
ceases to be an abstraction, but is only a set of gibberish bits.

Example 1.5. Contrasting Four Processes to Find Fibonacci Number F(50)
The manual calculation process for Fibonacci numbers in Example 1.1 produces
exact results, but it is not automatic and very tedious. Computing via fib-10.go is
automatic, but it is slow when n gets large. Example 1.3 uses Binet’s formula to
compute Fibonacci numbers. It is faster but does not produce exact integer results.

Can we have a smarter way to compute Fibonacci numbers while insisting on
getting exact integer results? Yes, we can. We will see in Chap. 2 that there is indeed
a smarter way, called dynamic programming, to speed up the Fibonacci numbers
computation significantly. The trick is to memorize intermediate results, avoiding
repeated computations.

We will discuss the program details in later chapters. Here we only need to
execute the four computational processes and contrast their behaviors, as summa-
rized in Table 1.2. These four processes are the manual process in Example 1.1, and
the three automatic processes using fib-50.go in Example 1.2, fib.binet-50.go in
Example 1.3, and fib.dp-50.go in Fig. 2.9, respectively.

1.2 Characteristics of Computational Thinking 13

The manual process is tedious thus prone to making mistakes. When the manual
process produces a correct result, it is an exact integer value, i.e., 12586269025. The
other three computational processes are automatic and guaranteed to produce correct
results. The program using Binet’s formula produces a correct floating-point num-
ber, 1.2586269024999998e+10, or 12586269024.999998, which is an approximate
(inexact) value, with a rounding error (roundoff error) of 0.000002. The other two
programs, fib-50.go and fib.dp-50.go, are guaranteed to produce correct and exact
result F(50)¼12586269025.

The manual process takes about 3–10 min to produce F(50)¼12586269025,
which actually consumes less time than the computational process utilizing the
recursive program fib-50.go. The other two computational processes are much faster,
by four orders of magnitudes.

☶

1.2.2 The Eight Understandings Within

Looking from inside of the computer science field, namely, from the designer’s
perspective, we can understand computational thinking from eight aspects, as shown
in Box 1.1. The eight understandings are pronounced as Acu-Exams.

The first understanding is automatic execution, which is actually the “A” in the
ABC features without. In other words, step-by-step mechanic automatic execution of
digital symbol manipulation is the most fundamental characteristic of computational
thinking, both without and within. It underlies all the other seven understandings.
Computer science studies logic that is automatic executable logic, algorithms that are
automatic executed algorithms, abstractions that are automatic executed
abstractions.

The other seven understandings address fundamental issues listed below, which
are grouped into three parts of logic thinking, algorithmic thinking, and systems
thinking, to be discussed in detail in Chaps. 3–5.

Table 1.2 Contrasting four computational processes for computing Fibonacci number F(50)

Process Execution time Produced result

Manual 135–600 s May produce correct result 12586269025
May produce incorrect result, e.g., 13586269025

fib-50.go 725 s 12586269025
Correct, exact result guaranteed

fib.binet-50.go 0.011 s 1.2586269024999998e+10 ¼ 12586269024.999998
Correct, inexact result with a rounding error of 0.000002

fib.dp-50.go 0.059 s 12586269025
Correct, exact result guaranteed

14 1 Overview of Computer Science

• Logic thinking addresses the issue: “What can be computed on a computer
correctly?” To put it simply, logic thinking makes computational processes
correct.

• Algorithmic thinking addresses the issue: “Given a computational problem, is
there a smart way to solve it efficiently on a computer?” To put it simply,
algorithmic thinking makes computational processes smart.

• Systems thinking addresses the issue: “How to construct a practical computing
system, both general-purpose and specific?” To put it simply, systems thinking
makes computational processes practical.

Box 1.1. Eight Understandings of Computational Thinking: Acu-Exams
• A: Automatic execution. Computational processes are automatically exe-

cuted step-by-step on computers.
• C: Correctness. The correctness of computational processes can be rigor-

ously defined and analyzed by computational models such as Boolean logic
and Turing machines.

• U: Universality. Turing machine compatible computers can be used to
solve any computable problems.

• E: Effectiveness. People are able to construct smart methods to solve
problems effectively.

• X: compleXity. These smart methods, called algorithms, have time com-
plexity and space complexity when executed on a computer.

• A: Abstraction. A small number of carefully crafted systems abstractions
can support many computing systems and applications.

• M: Modularity. Computing systems are built by composing modules.
• S: Seamless Transition. Computational processes smoothly execute on

computing systems, seamlessly transitioning from one step to the next step.

The issue in logic thinking can be further divided into two problems, which lead
to Understandings C and U. First, what is correctness? It turns out that the correct-
ness of computational processes can be rigorously defined and analyzed with the
help of computational models such as Boolean logic and Turing machine. Second, is
there a general-purpose computer that can correctly compute any computable enti-
ties? The answer is a rigorous Yes, in the form of Church-Turing Hypothesis. In
addition, we can rigorously define what is not computable and provide concrete
evidence, such as the Turing machine halting problem and Gödel’s incompleteness
theorem.

Algorithmic thinking involves how to make computational processes smart. Here
we have two insights, i.e., Understandings E and X. Computer scientists have been
able to rigorously define the concept of algorithms and have developed many types
of smart algorithms. We will discuss several types, including divide-and-conquer
and dynamic programming. Computer scientists are also able to rigorously define
and analyze the time complexity and space complexity of many computational

1.2 Characteristics of Computational Thinking 15

problems and their algorithms. We will discuss the method of asymptotic analysis,
utilizing the famous big-O notation and its cousins. We will also illustrate the
famous problem of "P vs. NP" using examples, which is one of the seven Millen-
nium Prize problems listed by Clay Mathematics Institute.

Systems thinking involves how to design practical systems for computational
processes. A computing system may be a general-purpose computer like a student’s
laptop computer, or a specific computer application system such as WeChat. Com-
puter science has progressed far from designing a system in arbitrary, ad hoc ways
into more advanced ways. The essence of building a system is to use abstractions
(Understanding A) to construct the system from modules (Understanding M), such
that computational processes seamlessly transition from one step to the next step on
the built system (Understanding S). We have millions of computer applications on
billions of computer systems today. They are all supported by a small number of
carefully crafted systems abstractions. We will discuss fundamental data abstractions
and control abstractions in Chap. 5.

We use an example below to illustrate the objectives of logic thinking, algorith-
mic thinking, and systems thinking. The details will be discussed in Chaps. 3–5.
Here we only need to run the programs and contrast their behaviors, to understand
what is meant when we say logic thinking makes computational processes correct,
algorithmic thinking makes them smart, and systems thinking makes them practical.
It helps to hand out in class the involved programs fib.go, fib.dp.go, fib.dp.big.go,
and fib.matrix.go.

Example 1.6. Fibonacci Computing in a Correct, Smart, and Practical Way
New students to computer science often have the implicit assumption that when the
input data and the algorithm are correct, the program execution should successfully
produce the correct result. The reality is more nuanced.

Let us compute F(n) by executing the four programs fib.go, fib.dp.go, fib.dp.big.
go, and fib.matrix.go, for n ¼ 50, 500, 5000000, and 1000000000, respectively. The
behaviors of these programs are summarized in Table 1.3. Note that we have four
versions of each program corresponding to the four input values of n. Thus, fib.
dp-500.go is fib.dp.go when the value for n is set to 500.

The first program fib.go uses a straightforward recursive method. It is terribly
slow (not smart), produces wrong results starting with n ¼ 93 (not correct), and can
only be used when n is small (not practical).

Table 1.3 Execution time (seconds) of four programs for computing Fibonacci numbers F(n)

n fib.go fib.dp.go fib.dp.big.go fib.matrix.go

50 725 0.059 0.019 0.000012

500 Error Error 0.026 0.000022

5,000,000 Error Error 102 4.13

1,000,000,000 Error Error Killed after 2 days 187,160

16 1 Overview of Computer Science

The second program fib.dp.go has the same incorrect and impractical issues as the
fib.go program. However, it is smarter by using a dynamic programming algorithm.
For n ¼ 500, it takes less than a second to compute F(500).

> go run fib.dp-500.go
F(500)= 2171430676560690477
>

Compare this to the F(500) result we obtain by running fib.binet-500.go in
Example 1.3, we see that running fib.dp-500.go generates a wrong output.

F(500)= 2171430676560690477 by fib.dp-500.go
F(500)= 1.3942322456169767e+104 by fib.binet-500.go

It turns out that fib.dp.go computes correct Fibonacci numbers only up to F(92).
For F(93), it generates a negative value: �6246583658587674878, an obviously
incorrect result. The reason is that the 64-bit integer data type used in fib.dp.go is too
small to hold F(93)¼ 12200160415121876738, which is larger than the largest
64-bit integer 263-1, or 9223372036854775807. The program has an overflow bug.

The fib.dp.big.go program fixes this overflow bug by using a data type called big.
Int, allowing integers of arbitrarily word length, i.e., number of bits. We can
comfortably compute not only F(500), but also F(5000000). The latter finishes in
102 s. Its result 7108285972. . .3849453125 has over 1 million digits.

When computing F(1000000000), i.e., n ¼ 1 billion, fib.dp.big.go may run into a
number of problems, such as “not enough memory”. Even with enough memory, the
program runs for two whole days without stopping, and has to be killed. We don’t
know how long it will execute to produce a result. The program is judged not
practical for computing F(1000000000).

The last program fib.matrix.go optimizes further by using a “matrix exponentia-
tion by doubling” algorithm. It takes 187160 s, or a little more than 3 h, to produce
the result for F(1000000000), which is an integer with over 200 million decimal
digits. The dominant part of the execution time is spent on conversion from the
binary format result to the decimal format result, before printing. In any event, we
finally have a program fib.matrix.go that is correct, smart, and practical, for com-
puting Fibonacci numbers F(n) up to n ¼ 1 billion.

The source code of all four programs can be found in Appendix 3.
☶

1.2.3 A Research Viewpoint of Computer Science

To stimulate the students’ curiosity and imagination, we discuss a viewpoint from
the computer science research community. In 2004, the National Research Council
of USA published a report, (called the US Academies Report in this book), which

1.2 Characteristics of Computational Thinking 17

summarized the fundamentals of computer science, including the essential character
and salient characteristics, from researchers’ viewpoint. These fundamental concepts
are listed in Box 1.2.

It turns out that this textbook covers most essential character and salient charac-
teristics from the US Academies Report, as shown in Table 1.4. Furthermore, more
than half of knowledge units are presented in such way that students are able to pass
Knuth’s Test.

Knuth’s Test: “The ultimate test of whether I understand something is if I can explain it to a
computer. . . . In most of life, you can bluff, but not with computers.”

Such knowledge units need to be learned in a mind-active, hands-on way. Simple
memorization is not enough. We call such knowledge units UKA units, where UKA
stands for Unity of Knowledge and Action. This pedagogic methodology of Unity of
Knowledge-Action (知行合一) was borrowed from Wang Yangming (王阳明,
1472–1529), a Chinese educator from the Ming Dynasty. An essence of this
methodology is to learn knowledge with mind-active, hands-on actions.

Box 1.2. Essential Character of Computer Science: A Research
Viewpoint
Computer science is the study of computers and what they can do: the inherent
power and limitations of abstract computers, the design and characteristics of
real computers, and the innumerable applications of computers to solving
problems.

Computer science research has the following salient characteristics:

(continued)

Table 1.4 Concepts of this book compared to those in the US Academies Report

US Academies concepts Concepts discussed in this book

Abstract computer Turing machine, automata

Real computer Laptop computer, WWW

Computer applications Outcomes of the four projects, programming exercises

Symbol manipulation Digital symbols from integer, character, image, to
programs

Abstractions Multiple abstractions, from circuit level to application
level

Algorithms Divide and conquer, dynamic programming

Artificial constructs Students Computer for Quicksort

Exponential growth P vs. NP, wonder of exponentiation

Fundamental limits Turing computability, Godel’s incompleteness
theorems

Action associated with human
intelligence

Reasoning by Boolean logic

18 1 Overview of Computer Science

Box 1.2 (continued)
• Involves symbols and their manipulation.
• Involves the creation and manipulation of abstractions.
• Creates and studies algorithms.
• Creates artificial constructs, notably those unlimited by physical laws.
• Exploits and addresses exponential growth.
• Seeks the fundamental limits on what can be computed.
• Focuses on the complex, analytic, rational action associated with human

intelligence.

1.3 Relation of Computer Science to Society

It helps understand computational thinking by looking at how computer science is
related to the human society and our civilizations. Students probably have an
intuitive feeling that computing is already everywhere. But how much? And why?
We need to learn some basic facts and hypotheses:

• Computational thinking already permeates our civilizations. Its pervasiveness and
fundamental importance are on par with capability of doing basic reading,
writing, and arithmetic.

• There are fundamental reasons why computing is everywhere. Scholars have
proposed several interesting hypotheses.

• Computer science is an attractive field, not just due to societal needs, but also
because it is cool, exhibiting wonders and persuasions basic to our modern
civilizations.

1.3.1 Computer Science Supports Information Society

Obviously, computing is already ubiquitous. A fact is that billions of people use
smartphones to access Internet every day. By the statistics of ITU (the International
Telecommunications Union), at the end of 2019, there were nearly 4 billion Internet
users worldwide, penetrating over 51% of the global population.

An interesting question is: What’s the age of the oldest computer user? An answer
is 113 years old. In 2014, a lady in USA, who was born in 1900, had to lie about her
age to sign on and use Facebook, as the Facebook sign-up page set the earliest birth
year to 1905.

Although a lot of people have heard of “we are in the information age”, fewer
people appreciate how wide and deep the permeation is, still fewer people can
explain why. We provide four essential facts and four hypotheses below.

1.3 Relation of Computer Science to Society 19

First fact: computer science directly supports the information technology
(IT) industry. The IT industry provides and sells computer and network hardware
products, software products, and services. The industry (producers) and the IT users
(consumers) together form the IT market. The worldwide IT market had grown
significantly, from only millions of US dollars in 1950s, billions in 1960s, to over
one trillion dollars in year 2000, and 2 trillion dollars in year 2013. Today, market
research firms such as IDC and Gartner use a larger metric, called the information
and communication technology (ICT) spending, to measure the market size when
the telecommunication sector is added to the market. In 2019, the worldwide ICT
market is about US$3.7~5 trillion, by different tracking methods.

Second fact: computer science supports digital economy. Economists have
observed a problem with the above measurement method of the IT or ICT industry:
the revenue of many famous IT companies are not included in the above market data,
because they sell little computer, network, telecommunication hardware, software,
and services. These companies include Google, Facebook, Tencent, Baidu, Alibaba,
etc. More than 90% of Google and Facebook’s income are from advertising. As such
they are advertising companies, not IT ones.

To better reflect the impact of ICT to the economy, economists established a new
term, called digital economy. The definition and measurement methods of digital
economy have not yet converged and stabilized. A 2017 study by Huawei and
Oxford Economics utilized global data over three decades, and estimated that the
global digital economy is worth 11.5 trillion US dollars. The top three digital
economies are USA ($3.4 trillion), Europe ($2.9 trillion), and China ($1.5 trillion).
The report observed that the world’s digital economy grew two and a half times
faster than global gross domestic product (GDP) over the past 15 years (2001–2016),
almost doubling in size since the year 2000.

A group of Chinese digital economists, called China Info 100, published a study
in 2018, which went one step further to broaden the scope of digital economy.
Digital economy is divided into five sectors:

Table 1.5 Digital economy data of 11 countries in 2016, in US$ Trillion

Country Digital Economy Size Percentage of GDP

United States 10.83 58.3%

China 3.40 30.3%

Japan 2.29 46.4%

Germany 2.06 59.3%

United Kingdom 1.54 58.6%

France 0.96 39.0%

South Korea 0.61 43.4%

India 0.40 17.8%

Brazil 0.38 20.9%

Russia 0.22 17.2%

Indonesia 0.10 11.0%

20 1 Overview of Computer Science

• Foundational digital economy (i.e., traditional ICT, 基础型信息经济),
• Productivity-enhancing digital economy (效率型信息经济),
• Convergence digital economy (融合型信息经济),
• Emergence digital economy (新生型信息经济), and
• Welfare digital economy (福利型信息经济).

The sum of all five sectors is the size of the digital economy. The 2016 numbers
estimated by this report are shown in Table 1.5.

Third fact: computer science supports information society. Human civilizations
have seen three main forms of society: the agriculture society, the industry society,
and now the information society. Computer science does not just impact technology
and economy, but also plays a central role in information society: a new megatrend
and long-term phase of human civilization development. As evidence, the United
Nations World Summit on the Information Society produced a document in
2003–2005, stating the following principle: “to build a people-centred, inclusive
and development-oriented Information Society, where everyone can create, access,
utilize and share information and knowledge, enabling individuals, communities and
peoples to achieve their full potential in promoting their sustainable development
and improving their quality of life, premised on the purposes and principles of the
Charter of the United Nations and respecting fully and upholding the Universal
Declaration of Human Rights.”

The fourth fact is a surprising one regarding human resources. Although billions
of people use IT, the community of IT professionals is not large. Dr. David Grier, a
former President of the IEEE Computer Society, defines IT professionals as people
who have earned a bachelor degree and work in research, education, development,
management and services of computing knowledge, products and services. He
estimates that there are only about 3~10 million IT professionals worldwide. Let
us take a middle number, say 7 million. That means there is roughly one IT
professional per one thousand people of the world’s population. With the increasing
demand of information society, it is no wonder that we see shortage of IT pro-
fessionals in job market.

Now let us discuss the four hypotheses. They all try to answer the question: Why
does computer science permeate our civilizations so widely and deeply? There are
many explanations. We summarize four hypotheses in Box 1.3.

Chomsky’s digital infinity principle is due to Noam Chomsky, an American
linguist. The idea is also expressed as “discrete infinity” and “the infinite use of
finite means”, and can be traced back to Galileo. In essence, it says that that all
human languages, no matter of which application domain or academic discipline,
follow a simple logical principle: a limited set of digits are combined to produce an
infinite range of potentially meaningful expressions. In other words, problems and
knowledge in any domain can be expressed by the professional language of that
domain. Any domain language can be expressed by digital symbols, thus amenable
to computer processing.

Karp’s computational lens thesis is due to Richard Karp, an American computer
scientist. We can understand Nature and human Society better through the

1.3 Relation of Computer Science to Society 21

computational lens. Why? Because Nature computes. Society computes. Many
processes in Nature and human Society, traditionally studied in physical sciences,
life sciences, or social sciences, are also computational processes. These processes
are still physical processes, chemical processes, biological processes, psychological
processes, business processes, social processes, etc. But viewing them as computa-
tional processes can bring in new perspectives and new value.

Babayan’s gold metaphor is an observation made by Boris Babayan, a Russian
computer scientist, in the HPC-Asia Conference in Beijing in the year 2000.
Computing speed is like gold, a hard currency that can be exchanged for anything,
be it new functionality, quality, cost, or user experience of products and services.

Boutang’s bees metaphor is by Yann Moulier Boutang, a French economist. Why
does ICT impact a much larger digital economy? We can liken ICT to bees. From an
economic viewpoint, bees generate two outputs of value. The direct output is honey.
The indirect output (economic externality) is pollination. Professor Boutang esti-
mated that pollination has 28–373 times more economic value than honey. Likewise,
the direct output of ICT is measured as the ICT market (about $3.4~4.3 trillion in
2016). The indirect output is digital economy, which ICT enables and pollinates, and
is multiple times larger (about $11.5~24 trillion in 2016).

Box 1.3. Why Computer Science Permeates Our Civilizations
Chomsky’s digital infinity principle: A finite set of digital symbols can be
combined to produce infinite expressions in many domain languages.

Karp’s computational lens thesis: Many processes in Nature and human
Society are also computational processes. Nature computes. Society computes.
We can understand Nature and Society better through the computational lens.

Babayan’s gold metaphor: Computing speed is like gold, a hard currency
that can be exchanged for anything.

Boutang’s bees metaphor:ICT is like bees, producing two types of outputs.
The indirect output (pollination) of bees has economic value that is orders of
magnitude larger than the value of the direct output (honey). Similarly, the
value of digital economy (indirect output) is much larger than that of the ICT
market (direct output).

1.3.2 Computer Science Shows Three Wonders

The history of computer science has shown three wonders that are not often seen in
other disciplines: the wonder of exponentiation, the wonder of simulation, and the
wonder of cyberspace. These technology wonders are continuing, further stimulating
innovations and applications.

Wonder of exponentiation: computing resources grow exponentially with time.
Three such resources are listed in Box 1.4. We have Nordhaus’s law for computer

22 1 Overview of Computer Science

speed, Moore’s law for the number of transistors on a semiconductor microchip, and
Keck’s law for communication bandwidth of an optical fiber.

It is remarkable that the wonder of exponentiation has existed for decades. It is
even more remarkable that the wonder of exponentiation is likely to continue into
future decades, despite the many seemingly unsurmountable technical obstacles.
Common sense tells us exponential growth is not sustainable. But computing and
communication speeds keep increasing exponentially.

Box 1.4. Laws Showing Wonder of Exponentiation
Nordhaus’s law: computer speed grew exponentially with time, increasing
50% per year from 1945 to 2006. This observation was made in 2007 by
Dr. William Nordhaus, an American economist.

Moore’s law: the number of transistors in a semiconductor chip grows
exponentially with time, doubling every 2 years or so. This observation was
made in 1975 by Dr. Gordon Moore, an American engineer.

Keck’s law: the data transmission rate of a single optical fiber grows
exponentially with time, increasing about 100 times in 10 years. This obser-
vation was made in 2015 by Dr. Donald Keck, an American physicist and
engineer.

Figure 1.7 shows growth trends of computer speed, energy efficiency (speed/
energy), and power consumption data of the world’s fastest computers from 1945 to
2015. We had a nice run for 60 years. Computer speed increased over a hundred

1.0E+00

1.0E+03

1.0E+06

1.0E+09

1.0E+12

1.0E+15

1.0E+18

1945 1957 1964 1976 1985 1995 2005 2015

Opera ons/S Opear ons/KWH Wa

ENIAC UNIVAC CDC6600 Cray-1 Cray-2 NWT BG/L TH-2

Fig. 1.7 Growth trends of computing speed, energy efficiency, and power consumption of the
world’s fastest computers (supercomputers) from 1945 to 2015. Special thanks to Drs. Gordon Bell,
Jonathan Koomey, Dag Spicer and Ed Thelen for providing data for the first three computers

1.3 Relation of Computer Science to Society 23

trillion times. But recently we run into trouble: the energy efficiency did not improve
as fast as speed anymore. Improving energy efficiency has become a top priority in
computing system design.

A recent progress is domain-specific computing. If it is difficult for general-
purpose computing to improve exponentially, can we increase speed and energy
efficiency by focusing on a specific domain of computational processes? An exam-
ple is the DianNao family of processors for deep learning workloads, which signif-
icantly improved the energy efficiency (purple box in Fig. 1.7).

The opposite to the wonder of exponentiation is the curse of exponentiation:
many problems and algorithms have exponential complexity. But this challenge also
serves as the source of many interesting researches and innovations. A case in point
is protein folding, also called protein structure prediction. The problem is to com-
putationally fold a protein into its three-dimensional structure. The brute-force
approach needs 3n operations, where n is size of the problem (usually n ¼
300~600). Now 3300 � 10143 is a lot of operations. Computer scientists have been
trying to find better algorithms that need much fewer operations, e.g., 1.6n or even nk,
where k is a small constant. A recent progress is made by AlphaFold in 2020.

Wonder of Simulation: computer simulation provides a third paradigm for
scientific enquiry, beyond theory and experiments. Simulation is to mimic physical
or social processes by executing computer programs. The first computer simulation,
also called computer experiment, was proposed and conducted in 1953 by physicists
Enrico Fermi, John Pasta, and Stanislaw Ulam, to partially solve a physics problem
later known as “the Fermi-Pasta-Ulam paradox”. In doing so they invented “a third
way of doing science. . .helped scientists to see the invisible and imagine the
inconceivable”, as commented by Professor Steven Sttogatz of Cornell University.

Example 1.7. Computer Simulation: Atoms in the Surf
The lecturer can show or ask the students to play with the video “Atoms in the Surf”
in Supplementary Material. It shows how a supercomputer was used to simulate the
collective motions of 9 billion aluminum and copper atoms, to reproduce a macro
phenomenon known as the Kelvin-Helmholtz Instability.

The simulation begins with laminar flow such that the aluminum and the copper
layers are heated to a temperature of 2000 K, and the relative velocity of the two
layers is 2000 m/s. Computer simulation enables scientists to see not only the macro
picture of how the aluminum-copper material evolves, but also the micro picture of
each atom’s state, every 2 femtoseconds.

☶

Wonder of Cyberspace. The cyberspace enables designers to build new virtual
things or virtual worlds that may not be possible in the physical world. Besides the
human society and the physical space (Nature and human-built things), computer
science helps create a new space called the cyberspace, consisting of computational
processes running on computers (recall Fig. 1.1). This is a salient feature of computer
science: creates artificial constructs, notably unlimited by physical laws (recall Box
1.2). Real examples abound, such as the following.

24 1 Overview of Computer Science

Can we build a shopping mall hosting a million vendors? This is difficult to do in
the physical world, but is already a reality in cyberspace. An example is the
electronic commerce services provided by the company Alibaba Group, which
host over ten million vendors through its Tmall and Taobao platforms in year 2020.

Can we build a bookstore holding a billion books? Again, we can, but in
cyberspace. Think of Amazon.com. We can also build a library in cyberspace,
where the collections are so large that we would need a thousand-floor library to
hold the books in the physical world.

Sometimes, cyberspace works together with human society and physical world to
create a Human-Cyber-Physical ternary computing system. In April 2019, scientists
published a research paper containing the first photographs of a blackhole. The
blackhole is 55 million light years away from the Earth. To take a photograph of it,
we need a telescope as big as our planet. Scientists utilized multiple physical
telescopes in several continents, to form an Earth-diameter virtual telescope. Imag-
ing data were captured in April 5–11 2017 by these physical telescopes and stored in
hard disks, which were then shipped to supercomputers for data correlation and
reduction. These computation and post processing took 2 years, before the images of
this blackhole were published in April 2019.

1.3.3 Computer Science Has Three Persuasions

Computing has a long history. But modern computer science is quite young. There is
no universally agreed birthdate of modern computer science. Some scholars put the
birth year to be 1936, when Alan Turing published his seminal paper on comput-
ability. Some choose 1945, when the first electronic digital computer, ENIAC, was
built. Some would say 1962, when the first Department of Computer Science was
established at Purdue University.

Although so young, computer science has grown into a rich field with many
interesting problems, scientific discoveries, and engineering techniques, which com-
bined produce wide and deep societal impact. A downside of this richness is that
there are too many buzzwords and even hypes associated with IT or ICT, bewilder-
ing to new students of computer science.

The reality is that at its core, computer science has a number of basic persuasions
that are relatively stable. What changes is the scope, refinement, manifestation, and
embodiment of these basic persuasions or visions. Jim Gray in 1999 noted three such
fundamental visions. We slightly revise his viewpoints and call the three visions as
problems: Babbage’s problem, Bush’s problem and Turing’s problem, to emphasize
that they are fundamental problems worthy of continued study. These problems are
summarized in Box 1.5.

Babbage’s problem: How to build efficient, programmable computers?
Here Babbage is Charles Babbage, a British computer scientist and professor at

Cambridge University. His original vision was to build a programmable computer
with information storage that could compute much faster than humans. In 1883,

1.3 Relation of Computer Science to Society 25

http://amazon.com

Babbage proposed the design of a mechanical digital computer called Analytic
Engine. Although not built, this is considered the first design of a general-purpose
digital computer capable of automatic execution. Ada Lovelace, who wrote a
program for this computer to compute Bernoulli numbers, is generally recognized
as the first computer programmer.

Box 1.5. Computer Science Has Three Persuasions
Babbage’s problem: How to build computers? More specifically, how to
build efficient, programmable computers? Efficiency may mean degree of
automation, computational speed, or energy efficiency (computational speed
per Watt).

Bush’s problem: How to use computers? More specifically, how to use
computers conveniently and effectively in solving problems? This calls for
new conceptions on how humans, computers and information interact.

Turing’s problem: How to make computers intelligent? More specifically,
how to make computing systems intelligent? Here intelligence generally refers
to approaching intelligent behaviors akin to humans.

Today, Babbage’s original vision is already realized. We have in fact expanded
his vision significantly. Three types of computers exist:

• Client-side computers. These are computers most familiar to us, as humans
(clients) directly use them. Examples include personal computers (PCs) such as
desktop computers and laptop computers, and mobile devices such as
smartphones and various smart pads.

• Server-side computers. They are also simply called servers, often hosted in
glassed-off machine rooms or Internet datacenters. Users do not directly see
these computers, but indirectly use them through client devices. Examples
include on-premise servers in a company, cloud computing servers hosted in
Internet datacenters, and supercomputers. An example is shown in Fig. 1.8.

Fig. 1.8 A server example: Sugon Nebulae supercomputer hosted in a machine room

26 1 Overview of Computer Science

• Embedded computers. These are computers embedded (hidden) in other sys-
tems. People do not see a computer, but see a non-computer system, such as a
microwave oven, a refrigerator, a car, or a pair of shoes.

Dr. Gordon Bell offers a finer classification of computers from the historical
perspective. His insight is based on observation of several decades, and becomes
known as Bell’s law: Computers develop by following three design styles, to
generate a new computer class roughly every 10 years. The three design styles are:
(1) develop the most capable computers with price as a secondary consideration;
(2) improve the performance but maintain a constant price; (3) reduce the price as
much as possible to produce a new “minimal-priced computer”. About a dozen
computer classes formed in the six decades from 1950 to 2007. Ten are listed below.

• Server-side computers hosted in on-premise machine rooms or datacenters

1. Supercomputers, the most capable computers
2. Mainframes, such as IBM S360
3. Minicomputers, such as DEC PDP-11
4. Clusters (systems of interconnected computers), such as IBM SP2

• Client-side computers directed used by humans

5. Workstation, with graphics processing and display capability
6. Personal computers (desktop PC), such as Apple 2
7. Portable computers, such as laptop computers
8. Dedicated personal devices, such as a game device, a digital camera
9. Smartphone, such as Apple iPhones

10. Wearable devices, such as a smart watch

There are already billions of computers of various classes worldwide. Many in the
IT community believe that this is still only the beginning. By 2040, there may be
trillions of computers worldwide. Most of them will be smart things that interact with
the physical world, also known as Internet of Things (IoT) devices. Research
opportunities abound for new classes of computers, both server-side and client-side.

Bush’s problem: How to use computers effectively?
Bush here refers Vannevar Bush, an American engineer and an MIT professor.

He proposed a vision called “Memex” in an influential article “As We May Think”
published in 1945, and revisited 20 years later in another article “Memex Revisited”
in 1965. Memex is rich concept including at least two characteristics: (1) every
scientist should have a personal computer that stores all human knowledge; and
(2) the scientist can easily access information and knowledge he needs, by associ-
ating one scientific record to another record. This association concept is called
hypertext today and appears in technology such as the World Wide Web.

In essence, Bush urges us to study and revisit the relationship between thinking
man and the sum of human knowledge, beyond the mechanic relationship between a
user and his computer device. From a more practical perspective, Bush’s problem

1.3 Relation of Computer Science to Society 27

directs our attention to the usage mode of computing systems. A usage mode
consists of the following considerations:

• The intended user community, e.g., scientists in Bush’s Memex example.
• The organization style of information (and knowledge), e.g., hyperlinked records

in Bush’s Memex example.
• The style of human-computer interaction, e.g., interactive read, write, and select

by following hyperlinks in Bush’s Memex example.

Usage modes visibly impact society. Widespread adoption of a usage mode often
signifies a new computing market. We have made great strides on realizing Bush’s
vision. From the human-computer interaction viewpoint, we have seen the following
usage modes in the 70-year history of modern computer science.

• Batch processing mode. A user submits a computational job (including program
and data) to the computer, and then waits for seconds, hours, days, or months
before the computer returns the result.

• Interactive computing mode. A user interacts with the computer instantly. For
instance, when entering 3000 words to form a file on a PC, the user sees instant
screen output of each entered character, without having to wait for all 3000 words
having been entered and processed in a batch processing way.

• Personal computing mode. Early computers, accessed via either the batch or the
interactive modes, are shared among multiple users. A personal computer (PC) is
dedicated to a single user’s usage.

• GUI mode. Early computers are accessed via a character interface. Later com-
puters provide graphic user interface (GUI).

• Multimedia mode. The GUI mode is extended to include not only graphics, but
also multiple media types such as images, audio and video.

• Portable computing mode. Now we can carry a computer around, in a bag, in our
pocket, etc. An example is a laptop computer.

• Network computing mode. Now we can access computing resources via com-
puter networks, e.g., local area network, the Internet, or the World Wide Web. An
important network computing mode is called cloud computing, where many
resources are located in the server side (in the cloud datacenters), and accessed
through the network via client-side devices.

• Mobile Internetmode. This mode combines the portable and the network modes.
An obvious example is to use WeChat on a smartphone.

Fundamentally, Bush’s problem is about how to best connect people, computers,
and information. This persuasion is continuing and new research opportunities
constantly appear, especially with respect to the trend of Human-Cyber-Physical
ternary computing systems. A concrete example is research in touchless interaction,
which upends traditional ways to use computers by touch (via keyboard, video
display and mouse) in a PC, or by touchscreen in a smartphone.

Turing’s problem: How to make computing systems intelligent.
Here Turing is Alan Turing, a British computer scientist and a founding father of

modern computer science. Turing’s problem can be rephrased as “how to make

28 1 Overview of Computer Science

computer application systems intelligent”, emphasizing the intelligent applications
of computers. Broadly speaking, there are three types of computer applications.

• The first type is scientific computing applications, mainly for scientists and
engineers. Their main workloads are to solve equations, to do computer simula-
tions, and to process scientific data.

• The second type is enterprise computing applications, mainly for organizations
such as companies, government agencies, and not-for-profit institutions. The
workloads include business workflows, transaction processing, data analytics,
decision support, etc.

• The third type is consumer computing applications, for individual consumer
users (the masses). Enterprise computing is also called business computing. This
is why the students may have heard phases such as “to B” (products or services
for business) and “to C” (products or services for consumers), or even B2B, B2C,
C2C, and C2B.

Among his fruitful research results, Alan Turing made two fundamental contri-
butions to computer science. In 1936, Turing rigorously defined the concept of
computability. In 1950, Turing proposed a test for machine intelligence and argued
that computer applications could eventually become intelligent.

From a practical application’s viewpoint, Turing’s first paper shows that any
computable problem, be it a scientific computing problem, a business computing
problem, or a consumer computing problem, can be solved by computer applica-
tions. Here computable problems are precisely defined as computable numbers
produced by a precisely defined computer, later called the Turing machine. Any
real number, such as any Fibonacci number or the circular constant π, is computable
if its decimal digits can be written down by a Turing machine automatically in a
sequence of step-by-step elementary operations. Turing also shows that there are
problems not computable. An example is the Entscheidungsproblem (German for
“decision problem”), which is a fundamental mathematics problem formulated in
1928 by David Hilbert and Wilhelm Ackermann. It asks: is there an algorithm to
decide whether a statement is a theorem in a given set of axioms? Turing’s paper
gave a negative answer.

Turing’s second paper went further: not only computable problems are solvable
by computer applications, but also some of these applications can be as intelligent as
humans. Turing did not offer a proof, but presented an interesting argument. He
proposed a test, later called the Turing Test, to show that a computer is intelligent if
a human observer cannot distinguish the computer from a human player in an
Imitation Game. There are three parties (two humans and a computer) in this
game. A human interrogator C asks questions of two players A and B in another
room, to determine whether A or B is a computer. The computer passes the Turing
test if “[the] average interrogator would not have more than 70 per cent chance of
making the right identification after five minutes of questioning”.

Seventy years have passed since Turing’s 1950 paper, and we have made
significant progress regarding Turing’s problem. Many computer application sys-
tems show some intelligent behavior akin to humans. Computers beat human players

1.3 Relation of Computer Science to Society 29

in many games, such as Chess, Go, Poker, and DOTA. Computer applications in
pattern recognition, language translation, autonomous vehicles, robotics, and
machine learning are already in practical use. This subfield of computer science is
called artificial intelligence (AI) and has attracted much attention.

1.3.4 Computational Thinking Is a Symphony

We have briefly discussed computer science and computational thinking. A set of
concepts have already emerged: encoding of domain problems into cyberspace,
computational process as digital symbol manipulation by a sequence of step-by-
step elementary operations, the ABC features without, the eight understandings
within (Acu-Exams), three wonders, and three persuasions. These multitudes of
concepts reflect the richness of the field, but may be bewildering to new students.
A key to handle this richness and complexity is to view computer science as one
thing: a symphony. It is not simply a pile of those particularities, but a synergy
of them.

The richness is a fact of the field. Different scholars voiced different conceptions
of computer science and computational thinking. Three examples follow.

• Professor Georg Gottlob, of Oxford University, believes that computer science is
the continuation of logic by other means, analogous to Clausewitz’s saying that
war is the continuation of politics by other means.

• Professor Richard Karp, of the University of California at Berkeley, promotes the
concept of computational lens (also known as algorithmic lens), emphasizing
solving scientific and societal problems through the lens of algorithms.

• Dr. Joseph Sifakis, of the French National Center for Scientific Research, advo-
cates system design science as a basic goal of the computer science field.

These three different viewpoints offer different perspectives on the same thing.
Computational thinking is a synergy of all of the concepts above. We call this
principle Yang Xiong’s Principle of Harmony (), as the Chinese
scholar Yang Xiong (53 BCE–18 CE) presented a similar principle in around year
2 BCE, in his work The Canon of Supreme Mystery (), a classic of 81 verses
on creativity. Professor Michael Nylan produced an English translation. Yang Xiong
invented a ternary symbol system (). A verse is called a head ().

Box 1.6 shows part of the verse named Cha (, ternary symbol), translated
roughly as diversity or divergence.

30 1 Overview of Computer Science

Box 1.6. Computer Science Is a Symphony

Head Cha (Diversity) : The way emerges from the multitude of harmonies, where
things diverge in their appearances.

Computer science is like a musical symphony. Many instruments produce
different sounds, but all instruments play the same music. Each instrument
offers its distinct contribution. The diversity of their differences creates a
harmonic whole of the symphony. Logic thinking, algorithmic thinking and
systems thinking together produce the totality of computational process, that is
correct, smart, and practical.

1.4 Exercises

For each exercise, select all correct answers. A selection including all and only
correct answers receives full score. A selection including one or more wrong
answers receives 0 score, but no penalty.

1. Refer to Fig. 1.1.

(a) The domain problem in the target domain must be a mathematic problem.
Problems in other domains must be first encoded into mathematical prob-
lems, before computer science can play a role in problem solving.

(b) The cyberspace consists of computational processes executing on computer
systems. By this definition, the ancient Egyptian civilization did not have
cyberspace, since there were no computers at that time.

(c) By the above definition of cyberspace, the ancient Egyptian civilization DID
have cyberspace, since ancient Egyptians calculated tax based on flood level
data of the Nile river measured by nilometers. The computational process
(tax calculation) was executed by computers in the forms of tax officials,
nilometers and possibly other devices.

(d) The cyberspace is the union of the physical space and the human society.

2. A binary digit (one bit) can be used to represent the following entity:

(a) The traffic light colors of Red, Yellow, Green.
(b) The answer to a Yes/No question.
(c) The state of an On/Off switch.
(d) The current time displayed on a digital clock.

3. Refer to Example 1.1 and Fig. 1.3.

(a) The algorithm in Fig. 1.3a is a digital symbol, since it denotes the algorithm
to compute F(10), is represented by a number of English characters, and
each English character can be represented by a number of bits.

1.4 Exercises 31

(b) The program fib-10.go is a digital symbol, since it denotes a high-level
language program and is representable by a number of bits.

(c) The program fib-10 is a digital symbol, since it denotes a machine code
program and is representable by a number of bits.

(d) The screen output F(10)¼ 55 in Fig. 1.3c is a digital symbol, since it denotes
the entity of a program’s output and is representable by a number of bits.

(e) The action of a human programmer entering the command “go build fib-10.
go” is not a digital symbol, since it is not representable by a number of bits.
The string “go build fib-10.go” is a digital symbol, but it is the result of the
action, not the action itself.

4. Three types of code are shown in Example 1.1: high-level language program,
binary program, and command (or shell command). How is each of the three
types of code processed by the computer system? Put the correct capital letter in
the parentheses of each line below.

(a) The high-level language program “fib-10.go” is (). X: executed
(b) The binary program “fib-10.go” is (). Y: interpreted
(c) The command “go build fib-10.go” is (). Z: compiled

5. Refer to Example 1.1. Suppose “F(10)” is changed to “F(50)” in program fib-10.
go. The screen output in Fig. 1.3c should become:

(a) F(10)¼ 55
(b) F(10)¼ 12586269025
(c) F(50)¼ 55
(d) F(50)¼ 12586269025

6. Refer to Example 1.1. Suppose “fibonacci(10)” is changed to “fibonacci(50)” in
program fib-10.go. The screen output in Fig. 1.3c should become:

(a) F(10)¼ 55
(b) F(10)¼ 12586269025
(c) F(50)¼ 55
(d) F(50)¼ 12586269025

7. Refer to Example 1.1. Suppose “// Output F(10)” is changed to “// Output F(50)”
in program fib-10.go. The screen output in Fig. 1.3c should become:

(a) F(10)¼ 55
(b) F(10)¼ 12586269025
(c) F(50)¼ 55
(d) F(50)¼ 12586269025

8. Refer to Example 1.1. Suppose “10” is changed to “50” in program fib-10.go.
The screen output in Fig. 1.3c should become:

(a) F(10)¼ 55
(b) F(10)¼ 12586269025

32 1 Overview of Computer Science

(c) F(50)¼ 55
(d) F(50)¼ 12586269025

9. Refer to Example 1.1. Why do we need the compiler to compile program fib-10.
go into program fib-10?

(a) The compiler checks for compile-time errors in the high-level language
program, such as various syntactic errors.

(b) The compiler checks for runtime errors.
(c) Program fib-10.go is a machine code program.
(d) The computer only understands and executes a machine code program.

10. Refer to Example 1.1. The command “go build fib-10.go” looks like a high-level
language statement and seems to directly execute on a computer. Why does this
not contradict to the assertion that “computer only understands machine code”?

(a) A command is not a program, therefore can directly execute on a computer.
(b) A command is a high-level language program and is interpreted into

machine code by a command interpreter called shell. The command seems
to execute directly, because the interpretation is done automatically and
behind the scene.

(c) The command is a short statement, and the computer can understand single
and short high-level language statements.

11. Why is it much easier for human to understand a high-level language program
than a machine code program?

(a) High-level language programs are written by highly skilled programmers.
(b) High-level language programs execute much faster than machine code.
(c) High-level language programs are shorter than machine code.
(d) A high-level language is similar to a natural language.

12. Regarding overflow, which of the following statements is correct?

(a) An overflow error occurs when the result value is too large for the bits
available. For instance, the value 9 is too large for a 4-bit integer (overflow),
but not too large for a 4-bit unsigned integer (no overflow).

(b) An overflow error occurs when the absolute value of the result is too large
for the bits available. For instance, the absolute value of �9 is 9¼10012,
which can be held in 4 bits. Thus, �9 does not cause overflow for a 4-bit
integer representation.

(c) Rounding errors (roundoff errors) are a type of overflow errors.
(d) Overflow errors are a type of roundoff errors.

13. Eight bits are used to represent an integer value. Which will result in overflow?

(a) When the integer is �256.
(b) When the integer is �129.
(c) When the integer is �64.
(d) When the integer is 64.

1.4 Exercises 33

(e) When the integer is 129.
(f) When the integer is 256.

14. Two computers compute 2.0/7.0 and obtain two different results. Why?

(a) An overflow error occurs.
(b) A compilation error occurs.
(c) A roundoff error occurs.
(d) One computer is a human, and he made a mistake calculating 2.0/7.0.

15. When looking from outside, computational thinking has three features without,
called the ABC features. They are:

(a) Automatic execution
(b) Binary representation
(c) Computational abstraction
(d) Constructive abstraction

16. Bit-accuracy in a computational process means:

(a) Every operation of the computational process generates a result that is
accurate and precise up to every bit.

(b) The computational process generates a correct integer result.
(c) The computational process generates a final result value that is precise up

one binary digit after the decimal point.
(d) The computational process generates a final result with statistical signifi-

cance, i.e., the p-value less is than 0.05.

17. When looking inside, computational thinking has eight understandings within,
with an acronym Acu-Exams. They are:

(a) Automatic execution
(b) Correctness and Universality in logic thinking
(c) Effectiveness and Complexity in algorithmic thinking
(d) Abstraction, Modularity and Seamless Transition in systems thinking

18. The Information Technology (IT) industry provides:

(a) Computer hardware products, such as laptop computers and servers
(b) Network hardware products, such as WIFI routers and network cards
(c) Computer software products, such as operating systems and Web browsers
(d) Internet services, such as search engine and video sharing

19. ICT refers to the Information and Communication Technology industry. It
provides:

(a) Computer and network hardware products, such as desktop computers and
smartphone devices

(b) Computer software products, such as operating systems and scientific com-
puting software

34 1 Overview of Computer Science

(c) Internet services, such as search engine and video sharing
(d) Telecommunication services, such as telephone services and Internet con-

nection services

20. The worldwide ICT spending in 2019 was about:

(a) 40 billion US dollars
(b) 400 billion US dollars
(c) 4000 billion US dollars, or 4 trillion dollars
(d) 40 trillion US dollars

21. The worldwide population is about 7.8 billion people in year 2019. How many
of them were estimated as IT professionals?

(a) 780 thousand, that is, one IT professional serving 10000 people
(b) 1 million, that is, one IT professional serving 7800 people
(c) 7.8 million, that is, one IT professional serving 1000 people
(d) 78 million, that is, one IT professional serving 100 people

22. About how much percentage of the worldwide population are computing pro-
fessionals (also known as IT professionals)?

(a) 0.01%
(b) 0.1%
(c) 1%
(d) 10%

23. The following statements regard the four hypotheses explaining the impact of
computer science.

(a) When Richard Karp said Nature computes and Society computes, he meant
that many processes in natural sciences and social sciences can be viewed as
computational processes.

(b) When Richard Karp presented the computational lens thesis, he meant that
he can turn his smartphone’s camera into a telescope to see stars.

(c) When Boris Babayan proposed his gold metaphor, he meant that one can
sell one’s computer for gold.

(d) When Yann Moulier Boutang proposed his bees metaphor, he meant that
ICT produces direct economic value (like bees producing honey), as well as
indirect value (like bees pollinating), and the indirect value is much larger
than the direct value.

24. The following explains why computer science has wide impact.

(a) Computer science is useful for many fields, because there are infinite many
computer programs. This is known as the Chomsky digital infinity principle.

(b) Computer science is useful for many fields, because many processes in those
fields can be viewed as computational processes, i.e., processes of informa-
tion transformation. This is known as Karp’s computational lens thesis.

1.4 Exercises 35

(c) Wires in microchips of computers should be made of gold, to resist corro-
sion and provide reliability. This is known as Babayan’s gold metaphor.

(d) ICT produces indirect economic value much larger than its direct value. This
is analogous to bees producing honey and doing pollination. The indirect
value (pollination) is much larger than the direct value (honey). This is
known as Boutang’s bees metaphor.

25. According to Boutang’s bees metaphor, the worldwide digital economy has a
much large value than the worldwide ICT spending number. The worldwide
digital economy in 2016 was valued at about:

(a) 150 billion US dollars.
(b) 1.5 trillion US dollars.
(c) 15 trillion US dollars.
(d) 150 trillion US dollars

26. The following statements are about wonder of exponentiation.

(a) Computer speed has increased exponentially with time since 1945.
(b) Computer speed has increased exponentially with time since 1800.
(c) Computer speed will increase exponentially with time till 2045.
(d) Computer speed will increase exponentially with time till 2800.

27. The following statements are about wonder of simulation.

(a) Computer simulation of car crashes is more economic and less dangerous
than physical tests of car crashes.

(b) Simulated car crash tests have fully replaced physically crashing cars.
(c) Simulated car crash tests can provide insights on the design of the cars.
(d) Simulated car crash tests can help formulate and verify the hypothesis that

drivers with dementia are more likely to experience accidents.

28. The following statements are about wonder of cyberspace.

(a) All things and processes in the cyberspace also appear in the physical world,
because Nature computes and Society computes.

(b) All things and processes in the cyberspace also appear in the physical world,
because computers can only simulate physical processes governed by
scientific laws.

(c) Things and processes in the cyberspace can be absent in the physical world,
because a tenet of computer science is to creates artificial constructs, notably
those unlimited by physical laws.

(d) The cyberspace can help create virtual things different from traditional
physical things. An example is the Event Horizon Telescope, which is an
Earth-diameter virtual telescope that was used to successfully take photo-
graphs of a blackhole.

36 1 Overview of Computer Science

29. The following statements are about Babbage’s Problem.

(a) A laptop computer is a server-side computer.
(b) A laptop computer is a client-side computer.
(c) A laptop computer is an embedded device.
(d) A laptop computer is a computer cluster.

30. The following statements are about Bush’s Problem.

(a) When a user is browsing the Web using a home PC, the user-computer is
working in the batch mode for scientific computing applications.

(b) When a user is browsing the Web using a home PC, the user-computer is
working in the interactive mode for consumer computing applications.

(c) C2C stands for Computer-to-Computer applications.
(d) C2C stands for Consumer-to-Consumer applications.

31. The following statements are about the Turing Test.

(a) The Turing Test is used to test how well a computer can drive an autono-
mous vehicle.

(b) The Turing Test is used to test how well a computer can recognize the object
in a picture, e.g., identifying the object as a cat or a dog.

(c) The Turing Test is used to test whether a computer can beat human in Chess.
(d) The Turing Test is used in a dialogue between a human interrogator and two

interrogated parties (a human and a computer) to see if the interrogator can
correctly tell the computer apart from the human.

32. What does it mean that “computer science is a symphony”?

(a) It means that multiple computers on the Internet can work together in real
time to play Beethoven’s Ninth Symphony.

(b) It means that multiple laptop computers in the same classroom can work
together in real time to play Beethoven’s Ninth Symphony.

(c) It means that computer science is the synergy of logic thinking, algorithmic
thinking and systems thinking.

(d) Designing a computer application system only involves systems thinking, to
make the application system practical. It does not need to involve logic
thinking or algorithmic thinking, which are too theoretical.

1.5 Bibliographic Notes

The chapter quotation is from an interview of Donald Knuth by Quanta Magazine in
February of 2020 [1]. Rusbult’s investment model of relationship can be found in
[2]. Computer science fundamentals are discussed in [3, 4]. Digital economy data
and the principle of information society are presented in [5–7]. The concepts of
Chomsky’s digital infinity, Karp’s computational lens, and Boutang’s bees metaphor
can be found in [8–10]. Historical trends of computing-related metrics are shown in

1.5 Bibliographic Notes 37

[11–15]. A recent progress in high-accuracy protein structure prediction is reported
in [16]. Computer simulation is discussed in [17, 18]. Examples of Human-Cyber-
Physical ternary computing systems are discussed in [19, 20]. Discussions on
Babbage’s problem, Bush’s problem, and Turing’s problem can be found in [21–
26]. Nylan [27] provides an English translation with commentary of 太玄经, The
Canon of Supreme Mystery.

References

1. D’Agostino S (2020) The computer scientist who can’t stop telling stories. Quanta Mag. https://
www.quantamagazine.org/computer-scientist-donald-knuth-cant-stop-telling-stories-20200416

2. Rusbult C, Martz J (1995) Remaining in an abusive relationship: an investment model analysis
of nonvoluntary dependence. Pers Soc Psychol Bull 21(6):558–571

3. Wing JM (2006) Computational thinking. Commun ACM 49(3):33–35
4. US National Research Council (2004) Computer science: reflections on the field. In: Reflections

from the field. National Academies Press, Washington, DC
5. Huawei and Oxford Economics (2017) Digital spillover: measuring the true impact of the digital

economy. https://www.huawei.com/minisite/gci/en/digital-spillover/index.html
6. China Info 100 (2018) The 2017 China digital economy development report. http://www.

chinainfo100english.com/201803/432.html
7. World Summit on the Information Society (2003) Building the information society: a global

challenge in the new millennium. Declaration of Principles
8. https://www.wikizero.com/en/Digital_infinity
9. Karp RM (2011) Understanding science through the computational lens. J Comput Sci Technol

26(4):569–577
10. Moulier-Boutang Y (2007) Cognitive capitalism and entrepreneurship: decline in industrial

entrepreneurship and the rising of collective intelligence. In: Conference on capitalism and
entrepreneurship. Cornell University, Ithaca, 28–29 Sept 2007

11. Nordhaus WD (2007) Two centuries of productivity growth in computing. J Econ Hist
67(1):128–159

12. Moore GE (1975) Progress in digital integrated electronics. In: Electron devices meeting, vol
21, pp 11–13

13. Hecht J (2016) Great leaps of light. IEEE Spectr 53(2):28–53
14. Xu ZW, Chi XB, Xiao N (2016) High-performance computing environment: a review of twenty

years experiments in China. Natl Sci Rev 3(1):36–48
15. Chen Y, Chen T, Xu Z, Sun N, Temam O (2016) DianNao family: energy-efficient hardware

accelerators for machine learning. Commun ACM 59(11):105–112
16. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Tunyasuvunakool K, et al (2020) High

accuracy protein structure prediction using deep learning. In: Fourteenth critical assessment of
techniques for protein structure prediction (abstract book), pp 22, 24

17. Strogatz S (2003) The real scientific hero of 1953. New York Times, 4 March 2003
18. Richards DF, Krauss LD, Cabot WH et al (2008) Atoms in the surf: molecular dynamics

simulation of the Kelvin-Helmholtz instability using 9 billion atoms. https://arxiv.org/abs/0810.
3037, www.youtube.com/watch?v¼Wr7WbKODM2Q

19. Xu ZW, Li GJ (2011) Computing for the masses. Commun ACM 54(10):129–137
20. Akiyama K, Alberdi A, Alef W et al (2019) First M87 event horizon telescope results.

IV. Imaging the central supermassive black hole. Astrophys J Lett 875(1):L4
21. Gray J (2003) What next?: A dozen information-technology research goals. J ACM

50(1):41–57

38 1 Overview of Computer Science

https://www.quantamagazine.org/computer-scientist-donald-knuth-cant-stop-telling-stories-20200416
https://www.quantamagazine.org/computer-scientist-donald-knuth-cant-stop-telling-stories-20200416
https://www.huawei.com/minisite/gci/en/digital-spillover/index.html
http://www.chinainfo100english.com/201803/432.html
http://www.chinainfo100english.com/201803/432.html
https://www.wikizero.com/en/Digital_infinity
https://arxiv.org/abs/0810.3037
https://arxiv.org/abs/0810.3037
http://www.youtube.com/watch?v=Wr7WbKODM2Q
http://www.youtube.com/watch?v=Wr7WbKODM2Q

22. Bell G (2008) Bell’s law for the birth and death of computer classes. Commun ACM
51(1):86–94

23. Bush V (1945) As we may think. Atlantic Monthly 176(1):101–108
24. Bush V (1991) Memex revisited. In: Nyce J, Kahn P (eds) From Memex to typertext: Vannevar

Bush and the mind’s machine. Academic Press, Boston, pp 197–216
25. Turing AM (1936–1937) On computable numbers, with an application to the

Entscheidungsproblem. Proc Lond Math Soc 42(2):230–265
26. Turing AM (1950) Computing machinery and intelligence. Mind 59(236):433–460
27. Nylan M (1993) The Canon of supreme mystery by Yang Hsiung: a translation with commen-

tary of the T’ai Hsuan Ching. SUNY Press, Albany

References 39

Chapter 2
Processes of Digital Symbol Manipulation

A physical symbol system has the necessary and sufficient
means for general intelligent action.
—Allen Newel1 and Herbert A. Simon, 1976

Symbols are carriers of human civilizations. Digital symbols are carriers of the
modern human civilizations. Digital symbol manipulation is at the core of computer
science. We discuss several examples of digital symbol manipulation in this chapter,
to show that data are digital symbols, programs are digital symbols, and computer
systems are a platform for digital symbol manipulation.

These examples are (1) binary-decimal number conversion, (2) representing
integers, (3) representing characters, (4) writing simple programs, (5) writing pro-
grams relating character strings to integers, (6) writing programs to compute large
Fibonacci numbers in two methods, recursive and dynamic programming.

These examples assume a von Neumann model of computer, which will also be
introduced with a detailed example of step-by-step execution of instructions, to show
how a computer works.

2.1 Data as Symbols

Many quantities in the physical world have analog values. Such a quantity has
continuous values. They are basically real numbers, but often represented by a finite
number of digits according to the application requirement on precision. For instance,
Fig. 2.1 shows the analog quantity of monthly average high temperature of Beijing in
2019, which have continuous values. This analog quantity of temperature can be
converted into a digital quantity by discretization, i.e., using discrete values shown
in the following table in both binary and decimal formats. There is a question mark
for the seventh month (July), which will be elaborated in an exercise.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
Z. Xu, J. Zhang, Computational Thinking: A Perspective on Computer Science,
https://doi.org/10.1007/978-981-16-3848-0_2

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3848-0_2&domain=pdf
https://doi.org/10.1007/978-981-16-3848-0_2#DOI

Month 1 2 3 4 5 6 7 8 9 10 11 12

Temperature
�C

00011 00100 01111 10011 11011 11111 ? 11101 11100 10010 01001 00011

3 4 15 19 27 31 32 29 28 18 9 3

Discretization maps continuous analog values to non-continuous discrete values.
There is no intermediate value between two consecutive discrete values. Discrete
values are also called digital values or digital symbols. Three terms are often used in
computer science regarding digital values: bit, byte, and word.

• Bit is the smallest digital symbol that can have a value of 0 or 1.
• Byte is a group of 8 bits. It is the smallest unit used by a typical computer when

storing digital symbols in memory. When a load or store instruction is executed to
access the memory, the computer accesses at least one byte. This is why memory
in most computers are called byte-addressable memory.

• Word is a group of bits. It is the smallest unit used by a typical computer when
processing digital symbols (or digital values) in processor. The number of bits in a
word is called the word length of the computer. Modern computers are 64-bit
computers, meaning their word length is 64 bits. Earlier computers have 32-bit,
16-bit, and 8-bit word lengths.

The most fundamental digital symbols are bits, numbers, and characters. This
section discusses three examples to show how to do binary-decimal number con-
version, how to represent integers, and how to represent English characters. The
focus is on representation of these symbols. Representation is the way the bits of a
symbol are laid out when the symbol is stored in the computer memory. Once a

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12

Temperature °C

Fig. 2.1 An analog quantity: average high Temperature value in Beijing in year 2019

42 2 Processes of Digital Symbol Manipulation

symbol is properly represented, manipulation (operations on the symbol) often
becomes obvious and intuitive.

2.1.1 Conversions Between Binary and Decimal Number
Representations

The problem is to convert a number in binary representation to its decimal repre-
sentation, and vice versa. It is helpful to have a table ready showing the
corresponding values of binary and decimal bases, as shown in Table 2.1.

Example 2.1. (110.101)2 = (?)10
(110.101)2¼1�22+1�21+0�20+1�2-1+0�2-2+1�2-3¼4+2+0.5+0.125 ¼

(6.625)10.

☶

Example 2.2. (6.625)10 = (?)2
We convert the integer part (6) and the fraction part (0.625) separately. The decimal
value 6.625 is converted into the binary value 110.101.

23 22 21 20 2-1 2-2 2-3 2-4 2-5

8 4 2 1 0.5 0.25 0.125 0.0625 0.03125

1 1 0 1 0 1

Students show different tastes for this binary-decimal conversion problem and
prefer different methods. There is no best conversion algorithm for all students. We
will not formally describe a conversion algorithm. Instead, we use a more intuitive
way of illustrating a conversion algorithm using the specific problem of converting
6.625 into 110.101.

Converting the integer part 6 into binary representation needs three steps. The
conversion algorithm goes as follows. It uses a variable called the remainder.

• Initialize the remainder as 6. Look at Table 2.1.
• Start from the column with the largest decimal base that is less than or equal to

6. The matching column is column 4, not column 8 or column 2.
• Work from left to right, one column at a time.

– Try to subtract the decimal base from the remainder, write down the result (1 if
sufficient, 0 otherwise) and the remainder in parentheses.

– When the remainder is 0, stop.

Table 2.1 Correspondence of binary and decimal bases

24 23 22 21 20 2-1 2-2 2-3 2-4 2-5

10000. 1000. 100. 10. 1. 0.1 0.01 0.001 0.0001 0.00001

16 8 4 2 1 0.5 0.25 0.125 0.0625 0.03125

2.1 Data as Symbols 43

The binary number of the integer part 6 is 110. Details of the three steps follow.

Step 1: 6-4¼2; sufficient, the new remainder is 2, write down 1(2).

22 21 20 2-1 2-2 2-3 2-4 2-5

4 2 1 0.5 0.25 0.125 0.0625 0.03125

1 (2)

Step 2: 2-2¼0; sufficient, the new remainder is 0, write down 1(0).

22 21 20 2-1 2-2 2-3 2-4 2-5

4 2 1 0.5 0.25 0.125 0.0625 0.03125

1 (2) 1 (0)

Step 3: As remainder is 0, stop. Note that the remaining bit of the integer part, i.e.,
column 1, is empty. This is understood to represent 0.

22 21 20 2-1 2-2 2-3 2-4 2-5

4 2 1 0.5 0.25 0.125 0.0625 0.03125

1 (2) 1 (0) 0

Converting the fraction part 0.625 uses a similar algorithm. It needs four steps.
Initially, let remainder be 0.625. Start from column 0.5 and work from left to
right.

Step 4: 0.625-0.5¼0.125; sufficient, the remainder is 0.125, write down 1 (.125).

22 21 20 2-1 2-2 2-3 2-4 2-5

4 2 1 0.5 0.25 0.125 0.0625 0.03125

1 (2) 1 (0) 0 1 (.125)

Step 5: 0.125-0.25; insufficient, the remainder is 0.125, write down 0 (.125).

22 21 20 2-1 2-2 2-3 2-4 2-5

4 2 1 0.5 0.25 0.125 0.0625 0.03125

1 (2) 1 (0) 0 1 (.125) 0 (.125)

Step 6: 0.125-0.125¼0; sufficient, the remainder is 0, write down 1 (0).

22 21 20 2-1 2-2 2-3 2-4 2-5

4 2 1 0.5 0.25 0.125 0.0625 0.03125

1 (2) 1 (0) 0 1 (.125) 0 (.125) 1 (0)

Step 7: As the remainder is 0, stop. The final result is (6.625)10 ¼ (110.101)2.

22 21 20 2-1 2-2 2-3 2-4 2-5

4 2 1 0.5 0.25 0.125 0.0625 0.03125

1 1 0 1 0 1

44 2 Processes of Digital Symbol Manipulation

☶

Example 2.3. (11.3)10 = (?)2
Use the same method to convert 11.3. This is an infinite process, corresponding to a
binary number with an infinitely cyclic fraction. The final result is

(11.3)10 ¼ (1011.010011001.)2.

Note that the largest decimal base less than 11 is 8. The conversion result after the
13th step is shown below.

23 22 21 20 2-1 2-2 2-3 2-4 2-5

8 4 2 1 0.5 0.25 0.125 0.0625 0.03125

1 (3) 0 (3) 1 (1) 1 (0) 0 (.3) 1(.05) 0 (.05) 0 (.05) 1 (.01875)

2-6 2-7 2-8 2-9

0.015625 0.0078125 0.00390625 0.001953125

1 (.003125) 0 (.003125) 0 (.003125) 1 (.001171875)

☶

Equipped with the above conversion method, we can represent all natural num-
bers, i.e., 0 and positive integers, in the binary notation. In addition, we use a base-16
notation called hexadecimal representation, as shown in Table 2.2.

The hexadecimal representation is a base-16 notation, meaning a digit has
16 values, from 0, 1, . . . to 15. To avoid confusion, we replace the six 2-digit

Table 2.2 Binary, decimal,
and hexadecimal representa-
tions of natural numbers

Binary Decimal Hexadecimal

23222120 101100 160

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

2.1 Data as Symbols 45

symbols 10, 11, 12, 13, 14, 15 with six 1-digit symbols A, B, C, D, E, F. Note that
hexadecimal digit symbols can also be written in small case: a, b, c, d, e, f. They
represent the same values as A, B, C, D, E, F.

Each hexadecimal digit represents four bits. Converting a binary number to a
hexadecimal number is easy: we simply partition the binary number into 4-bit
groups, starting from the least significant bit, and then convert each 4-bit group
into a hexadecimal digit according to Table 2.2.

For instance, to represent the decimal value 63 in an 8-bit binary representation,
we have 63 ¼ 00111111. Partitioning it into 4-bit groups, we have 0011 1111 ¼
3F16. The hexadecimal representation 3F16 is sometimes simply written as 3F when
there is no confusion. In computer programs, we often write 0x3F, where 0x denotes
hexadecimal representation. Some computers differentiate capital or small cases,
such that 3F16 is written as 0x3f or 0X3F.

Having fewer numbers of digits, the hexadecimal representation is often easier for
humans to understand and use than binary representation.

2.1.2 Representing Integers in Two’s Complement
Representation

The above examples seem to suggest a natural way to represent natural numbers and
integers. If we have n bits, we can precisely represent all 2n natural numbers in the
interval [0, 2n-1], such that binary 0. . .00 represents decimal 0, binary 0. . .01
represents 1, and binary 1. . .1 represents 2n-1. When n¼8, we can represent all the
256 natural numbers in the interval [0, 255], where 00000000 ¼ 0, 00000001 ¼
1, . . ., and 11111111 ¼ 255. This is called the unsigned integer representation.

How about integers? A straightforward method, called the simple signed integer
representation, is to use the leftmost bit for the sign bit, and the remaining n-1 bits for
the absolute value. Thus, 8 bits are enough to represent integers in the interval [-127,
127], as 27¼128. However, this intuitive representation has problems, as the fol-
lowing example shows.

63 ¼ 00111111, 64 ¼ 01000000, (-63) ¼ 10111111, (-64) ¼ 11000000.
63 + 64 ¼ 00111111 + 01000000 ¼ 01111111 ¼ 127 (correct)
(-63) + (-64) ¼ 10111111 + 11000000 ¼ 11111111 ¼ (-127) (correct)
63 + (-63) ¼ 00111111 + 10111111 ¼ 11111110 ¼ (-126) (wrong!)

A smarter representation is called two’s complement representation. Zero and
positive numbers are represented in the usual way. A negative number is represented
by its two’s complement: (1) finding the binary representation of its absolute
number, (2) bit-wise inverting the binary representation, and (3) adding 1 to the
inverted number. The negative integer (-63) is represented as 11000001, because

1. the binary representation of the absolute value of (-63) is 63¼00111111,
2. bit-wise inverting 00111111 yields 11000000, and
3. adding 1 yields 11000000+00000001 ¼ 11000001.

46 2 Processes of Digital Symbol Manipulation

This smarter representation solves the above problem. Let us verify it by redoing
the arithmetic, noting two details when doing addition: (1) the sign bits are treated
the same as the other bits, and (2) the carry over the sign bit is ignored.

63 ¼ 00111111; 64 ¼ 01000000; (-63) ¼ 11000001, (-64) ¼ 11000000
63 + 64 ¼ 00111111 + 01000000 ¼ 01111111 ¼ 127 (correct)
(-63) + (-64) ¼ 11000001 + 11000000 ¼ 10000001 ¼ (-127) (correct)
63 + (-63) ¼ 00111111 + 11000001 ¼ 00000000 ¼ 0 (correct!)

A bit-by-bit process is shown below. Note that the carry bit over the sign bit is
ignored (boldfaced).

63 + (-63) = 00111111 + 11000001 = 100000000 = 000000002 = 010

11000001
The carry bits 11111111
The result bits 100000000 = 000000002 = 010

2.1.3 Representing English Characters: The ASCII
Characters

Any finite set of symbols can be represented by one or more bits. Any symbols, not
just numbers.

Suppose a symbol set has more than 2n-1 but no more than 2n symbols. A
straightforward method of representation is to use n-bit numbers, 2n of them in
total, to represent the symbol set, such that each n-bit number represents a distinct
symbol of the set.

A basic format for representing English characters is ASCII (American Standard
Code for Information Interchange), which uses one byte (8 bits), as shown in
Fig. 2.2. Actually, only 7 bits (D6D5D4 D3D2D1D0) are used to represent characters,
the highest bit (D7) is used for other purpose, such as extension or error detection. So
D7 is always 0 in Fig. 2.2.

Seven bits have 128 combinations and can represent 128 symbols. Of these
128 combinations, 33 combinations (the first 32 and the last combinations) are
used to represent control characters, such as carriage return, escape, and delete.
The remaining 95 combinations are used to represent “normal” characters in a usual
English text, such as characters in the alphabet (A, . . ., Z, a, . . ., z), decimal numbers
(0, . . ., 9), various punctuation and other symbols (+, !, @, #, $, %, etc.).

The value of a character in Fig. 2.2 is also called the ASCII encoding of that
character, also known as ASCII code or ASCII value. The value is an 8-bit unsigned
integer value, and could be displayed in binary, decimal, or hexadecimal formats.
Since the leftmost bit is always zero, the value of an ASCII character is between
0 (for the null character NUL) and 127 (for the delete character DEL).

2.1 Data as Symbols 47

For instance, from Fig. 2.2, we can see that the ASCII encoding for letter X is
010110002 ¼ 8810. The ASCII encoding for the plus sign ‘+’ is 001010112 ¼ 4310.
The ASCII encoding for escape character ESC is 000110112 ¼ 2710.

The character string “Alan Turing” contains 11 characters, one of which is a space
(SP). This character string’s ASCII encoding is “Alan Turing” ¼ [65, 108, 97, 110,
32, 84, 117, 114, 105, 110, 103].

Three ASCII characters need special mention, i.e., null (NUL), space (SP), digit
0. Some students find them confusing, probably because they all intuitively indicate
some forms of emptiness. But they are quite different characters. In particular, note
that the ASCII encoding for digit 0 is not 0, but 48. The ASCII value 0 is used for the
null character NUL. We contrast the ASCII encodings for these three characters
below and mark them in Fig. 2.2.

ASCII value for the null character NUL:
000000002 ¼ 010

ASCII value for the space character SP:
001000002 ¼ 3210

ASCII value for the digit 0 character:
001100002 ¼ 4810

 D7D6D5D4

D3D2D1D0

0000 0001 0010 0011 0100 0101 0110 0111

0000 NUL DLE SP 0 @ P ` p

0001 SOH DC1 ! 1 A Q a q

0010 STX DC2 ” 2 B R b r

0011 ETX DC3 # 3 C S c s

0100 EOT DC4 $ 4 D T d t

0101 ENQ NAK % 5 E U e u

0110 ACK SYN & 6 F V f v

0111 BEL ETB ’ 7 G W g w

1000 BS CAN (8 H X h x

1001 HT EM) 9 I Y i y

1010 LF SUB * : J Z j z

1011 VT ESC + ; K [k {

1100 FF FS , < L \ l |

1101 CR GS - = M] m }

1110 SO RS . > N ^ n ~

1111 SI US / ? O _ o DEL

Fig. 2.2 Representation of ASCII Characters

48 2 Processes of Digital Symbol Manipulation

2.2 Programs as Symbols

For students new to programming, it helps to write and run a number of simple
programs with increasingly complex structures. Deliberated errors are included in
some programs to show and debug compiling errors and runtime errors.

2.2.1 A Number of Simple Programs

It is common practice to ask students to write their first program to output some form
of “Hello, world!”. Figure 2.3 starts with an even simpler program and then adds
several more programs, some of them containing errors. The point is to familiarize
the students with the edit-compile-execute process.

The null.go program is correct but does nothing. The program hello.go is correct
and outputs hello!. The program hello-1.go contains compiling errors. The screen
output of each program’s compile-execute process is shown below. The “>” symbol
is the command-line prompt.

> go build null.go ; Compile null.go into an executable file null
> ./null ; Execute null
> ; The program does nothing and returns to shell

package main // declare main package of the program
func main() { // declare main function of the program
} // the body of the function is empty

package main
import "fmt" // import a library package “fmt”
func main() {

fmt.Println("hello!") // which is used here to print out things
}

package main
func main { } (// wrong parentheses are used
)

(a)

(b)

(c)

Fig. 2.3 Some simple programs. (a) The simplest Go program null.go which is correct but does
nothing. (b) A correct program hello.go which outputs hello! (c) A wrong program hello-1.go which
produces compiling error

2.2 Programs as Symbols 49

> go build hello.go ; Compile hello.go into an executable file hello
> ./hello ; Execute hello
hello! ; The program outputs hello!
> ; The program finishes and returns to shell

The two steps of the compile-execute process can be combined into one step.

> go run hello.go ; use “run” instead of “build”
hello!
> go run hello-1.go
command-line-arguments
.\hello-1.go:2:6: missing function body
.\hello-1.go:2:11: syntax error: unexpected {, expecting (
>

Actually, three parties are involved in executing the above commands and pro-
grams: the human user, the command-line environment of the operating system
called the shell environment, and the rest of the computer. The shell provides a user
interface for the user to enter a command and see the execution result of the
command. The shell also interprets (executes) a command and generates the result
of execution. Recall that commands are also programs.

During these processes, a program needs to do three things besides executing
internal instructions: accepts input, produces output, and produces error output. Now
we encounter a problem: where is the source/destination? Accept input from where?
Where is the produced output sent? Produce error output to which device? Modern
computers have a default answer to these questions, unless specified by the user
otherwise:

• Accept input from the Standard Input device, usually the keyboard device. It is
often denoted by a name such as StdIn, stdIn, or stdin, in programs.

• Send output to the Standard Output device, usually the display screen. It is often
denoted by a name such as StdOut, stdOut, or stdout in programs.

• Send error output to the Standard Error device, usually the display screen. It is
often denoted by a name such as StdErr, stdErr, or stderr in programs.

Sometimes, the source/destination object to input or output is a file stored in the
hard disk, but we use a name to refer to the file. We go through the above simple
programs again, paying attention to how the standard input, output, and error output
behave.

>go build null.go ; Shell gets input from StdIn, with file name null.go
> ; No output sent to StdOut. A file null sent to disk.

> ./null ; Shell gets input from StdIn, with file name null
> ; No output sent to StdOut.

50 2 Processes of Digital Symbol Manipulation

> ./hello ; Shell gets input from StdIn, with file name hello
hello! ; Program hello sends output "hello!" to StdOut
> ; The program finishes and returns to shell

> go build hello-1.go ; Shell gets input from StdIn, with file name
hello-1.go
command-line-arguments ; Error messages to StdErr
.\hello-1.go:2:6: missing function body
.\hello-1.go:2:11: syntax error: unexpected {, expecting (
>

We can use the symbol ‘<’ to redirect standard input, and the symbol ‘>’ to
redirect standard output, respectively. For instance, the following command

> ./hello > helloResult
>

sends nothing to StdOut, because the result is redirected to file helloResult.

2.2.2 Programs Relating Character Strings to Integers

We can better understand the most basic digital symbols, i.e., numbers and charac-
ters, by writing three programs: symbols.go, name_to_number-0.go, and
name_to_number.go. The basic digital symbols manifest as simple data types and
their representations, such as integer, array, and character string types, and decimal,
hexadecimal, binary, and character representations. These representations are spec-
ified using different formatting verbs in a fmt.Printf statement.

The first program symbols.go shows these different representations of the same
value 63. The program generates four different screen outputs 63, 0x3F, 111111, and
‘?’, by using four different formatting verbs %d, %X, %b, and %c, respectively.

Of the four formatting verbs, the character verb %c is the most basic. The reason
is that the display screen only prints out one character at a time. Printing out decimal
value 63 by the %d verb is actually done by using %c twice to output ASCII
characters ‘6’ and ‘3’. The last three fmt.Printf statements each try to implement
the %d verb functionality using only %c by outputting a string of two characters
6 and 3 (Fig. 2.4).

The fmt.Printf("String: %c%c\n",63) statement naively uses two %c verbs for the
two characters 6 and 3. It forgets that 63 is one value. The next statement separates
63 into two values 6 and 3 before printing. It fails because 6 and 3 are the ASCII code
value for control characters ACK and EXT, displayed as ═ and ╚, respectively. The
last statement remedies this by adding ‘0’, which represents character digit 0 and has
a value of 48. Thus, 6+'0'¼54 and 3+'0'¼51, respectively, which are the correct
ASCII code values corresponding to characters 6 and 3.x

2.2 Programs as Symbols 51

The second program computes the student code from a student name, represented
as a string of ASCII characters. More specifically, program name_to_number-0.go in
Fig. 2.5 outputs the sum of the ASCII code values of the eleven characters in the
student name string "Alan Turing". Students are suggested to read the material
through to Fig. 2.7, which will make the material easier to understand.

This example introduces four new types of digital symbols: variable, array,
string, and loop. Variables represent those digital symbols the values of which may
change during a program’s execution. In contrast, a constant symbol does not
change its value. Variables should be declared before using. The statement

var name string = "Alan Turing"

declares a variable: its name is name, its data type is string (a byte array), and its
initial value is "Alan Turing". Any digital symbol has these three aspects: name,
type, and value. The above declaration statement can be shortened to

name := "Alan Turing",

which is valid within a code block between { and }.

(a)

package main
import "fmt"
func main() {

fmt.Printf("Decimal: %d\n",63)
fmt.Printf("Hex: %X\n",63)
fmt.Printf("Binary: %b\n",63)
fmt.Printf("Character: %c\n",63)
fmt.Printf("String: %c%c\n",63)
fmt.Printf("String: %c%c\n",6,3)
fmt.Printf("String: %c%c\n",6+'0',3+'0')

}

> go run symbols.go
Decimal: 63 ;
Hex: 3F ; hexadecimal representation of value 63
Binary: 111111 ; binary representation of value 63
Character: ? ; ASCII character corresponding to 63
String: ?%!c(MISSING) ; error, 63 is one value, not for two characters
String: ; error, output control characters ACK and EXT
String: 63 ; correctly output two characters 6 and 3
>

(b)

decimal representation of value 63

Fig. 2.4 Program symbols.go and its output. (a) Program symbols.go. (b) Output by executing
program symbols.go

52 2 Processes of Digital Symbol Manipulation

An array is a variable with 0 or more elements of the same data type, as
illustrated in Fig. 2.6. A string variable is an array such that its elements are of
type byte and their values can only be initialized but not altered. The data type byte
is also called uint8, i.e., 8-bit unsigned integer that can have a value from 0 to 255.

The character string “Alan Turing” contains 11 elements, represented in a
computer memory as an array: “Alan Turing” ¼ [65, 108, 97, 110, 32, 84,
117, 114, 105, 110, 103]. As the initial value, this string is assigned to an array
variable called name. The array’s length is 11, the number of the array elements. The
length of array name can be found by calling a system-provided function len(name).

We use name[i] to specify the i-th element of array name, where i is called the
array index. The index’s value starts from 0 and increments up to len(name)-1, or
11-1¼10. Thus,

name[0]='A'=65, name[1]='l'=108, name[2]='a'=97,
name[3]='n'=110, name[4]=' '=32, name[5]='T'=84,
name[6]='u'=117, name[7]='r'=114, name[8]='i'=105, name[9]

='n'=110, name[10]='g'=103.

Note that each array element is a variable of type byte (8-bit unsigned integer). It
can hold the ASCII encoding of a character. In the above string example, name
[0] holds English letter A, which has ASCII encoding 65. We need to pay attention to
name[4], which holds the space character ' ' (SP), with ASCII encoding 32.

Program name_to_number-0.go produces the sum of these eleven numbers, to
output 1045. That is: 65+108+97+110+32+84+117+114+105+110+103 ¼ 1045.
The program does this summation by the following for loop statement:

package main
import "fmt"
func main() {

var name string = "Alan Turing"
sum := 0 // sum is type int, i.e., 64-bit integer
for i := 0; i < 11; i++ { // i is type int

sum = sum + int(name[i])
}
fmt.Printf("%d\n", sum)

}

> go run name_to_number-0.go
1045
>

(b)

(a)

Fig. 2.5 Program name_to_number-0.go and its output. (a) Source code of program
name_to_number-0.go. (b) Screen output by executing program name_to_number-0.go

2.2 Programs as Symbols 53

for i := 0; i < 11; i++ { // 0 � i < 11; increment i
sum = sum + int(name[i]) by 1 at each iteration

}

Start with i ¼ 0. Repetitively execute the loop body until i � 11. At each
repetition (called iteration), increment i by 1. This is what i++ means.

The loop body is the code block between { and } of the for loop. Here, the loop
body is the assignment statement sum ¼ sum + int(name[i]), which assigns the
value of the right-side expression sum + int(name[i]) to the left-side variable sum.

In other words, the for loop statement is a shorthand notation for executing the
loop body 11 times, equivalent to the following 11 lines of code:

sum = sum + int(name[0])
sum = sum + int(name[1])
sum = sum + int(name[2])
sum = sum + int(name[3])
sum = sum + int(name[4])
sum = sum + int(name[5])
sum = sum + int(name[6])
sum = sum + int(name[7])
sum = sum + int(name[8])
sum = sum + int(name[9])
sum = sum + int(name[10])

This for loop accumulatively adds up the 11 elements of array name, and puts the
result in the integer variable sum. Note that before the for loop, sum is already
initialized to 0 by the sum ¼ 0 statement, as shown in Fig. 2.5a.

Some students may find the expression sum + int(name[i]) strange. Why not
simply write the expression as sum + name[i]?

The lecturer can deliberately make a mistake here by showing what error will
occur if we use expression sum + name[i]. Two key ideas can be revealed: (1) only
values of the same data type can be added (operated); and (2) if an operation involves
values of different types, a type cast operation can be used to convert a value into the
desired type.

The four values involved in the “sum ¼ sum + int(name[0])” assignment state-
ment are shown in Table 2.3. Before executing the statement, variable sum (right-
side) holds a 64-bit integer value 0, and name[0] holds an 8-bit unsigned integer
value 65. After execution, sum (left-side) holds a 64-bit integer of value 65.

108 97 110 32 84 117 114 105110103]
0 1 2 3 4 5 6 7 8 9 10array index

array name array length

name = [65

Fig. 2.6 Illustration of an array variable, called name, after the declaration statement var name
string ¼ "Alan Turing"

54 2 Processes of Digital Symbol Manipulation

In the right-side expression sum + int(name[0]), variable sum is of type int (64-bit
integer), and name[0] is of type byte (8-bit unsigned integer). They cannot be added.
We need the type cast operation int(. . .), to convert name[0], a value of type byte, to
a value int(name[0]) of integer type, and then add to integer variable sum. The type
cast operation int(name[0]) pads the 8-bit value 01000001 of name[0] into a 64-bit
value, adding 56 0’s to the left.

The last statement of program name_to_number-0.go is an output statement. It
prints out the value of sum by using an fmt.Printf statement with the formatting verb
%d. That is, output the value of sum in decimal representation.

Example 2.4. Realizing a High-Level Formatting Verb with a Basic Verb
What if we only have the %c formatting verb? A challenge to students is to
implement formatting verb %d in fmt.Printf("%d\n", sum) by using only the basic
formatting verb %c. This is done by the third program name_to_number.go, which
demonstrates how to realize a more complex operation (the %d verb) via elementary
operations (the %c verb), as shown in Fig. 2.7. The functionality of the single-line

Table 2.3 Type casting makes an operation on values of different types possible

Value name Binary representation

sum (right-
side)

00

name[0] 01000001

int(name[0]) 0001000001

sum (left-
side)

0001000001

package main
import "fmt"
func main() {

var name string = "Alan Turing"
sum := 0
for i := 0; i < 11; i++ {

sum = sum + int(name[i])
}
var sum_bytes [4]byte
var j int
for j = 3; sum != 0; j-- {

sum_bytes[j] = byte(sum%10) + '0'
sum = sum / 10

}
fmt.Printf("%c", sum_bytes[0])
fmt.Printf("%c", sum_bytes[1])
fmt.Printf("%c", sum_bytes[2])
fmt.Printf("%c", sum_bytes[3])

}
fmt.Printf("\n")

Fig. 2.7 Program name_to_number.go and its output

2.2 Programs as Symbols 55

statement fmt.Printf("%d\n", sum) in name_to_number-0.go is realized by the
eleven lines of code (marked in red) in name_to_number.go.

Writing name_to_number.go as a personalized program different for each student
is left as a programming exercise. Let us see how "1045" in Fig. 2.4b is printed out
by noticing the following. In Go notation, sum%10 is a modulus operation, i.e., sum
mod 10. It generates the remainder when sum divides 10. For instance, 86%10
generates 6. Expression sum / 10 is an integer division, and the result is rounded to
integer. For instance, 86/10 ¼ 8, not 8.6.

The for j loop is equivalent to the following sequence of statements:

sum_bytes[3]=byte(sum%10)+'0' // sum_bytes[3]=byte(1045%10)+'0'
(='5')
sum = sum / 10 // sum=1045/10 (=104)
sum_bytes[2]=byte(sum%10)+'0' // sum_bytes[2]=byte(104%10)+'0'

(='4')
sum = sum / 10 // sum=104/10 (=10)
sum_bytes[1]=byte(sum%10)+'0' // sum_bytes[1]=byte(10%10)+'0'

(='0')
sum = sum / 10 // sum=10/10 (=1)
sum_bytes[0]=byte(sum%10)+'0' // sum_bytes[0]=byte(1%10)+'0'

(='1')
sum = sum / 10 // sum=1/10 (=0)

The final print statement:

fmt.Printf("\n")

changes to the next line (new line), to make a clean printout.
☶

2.2.3 Good Programming Practices

This UKA unit introduces students to good programming practices. The resulting
code might be longer, but is easier for humans to understand, use, and maintain. We
illustrate five such practices by revising the code in Fig. 2.7. Modifying or updating
programs to improve software quality is called software maintenance, meaning to
maintain the code. The updated code, shown in Fig. 2.8, has several differences
from and improvements over the original code in Fig. 2.7.

• Use descriptive names for variables and constants. The new code uses more
descriptive studentName and sumBytes, both in camel notation, to replace the
less descriptive names: name and sum_bytes.

• Avoid magic numbers. The old code contains three magic number, 11, 4, 3, in
order of appearance. Magic numbers are numbers directly appearing in code
without context or explanation. A fellow programmer cannot understand what the

56 2 Processes of Digital Symbol Manipulation

numbers indicate and why they have such values. The new code replaces 11, 4, 3
by three descriptive expressions len(studentName), maxCodeLength, and len
(sumBytes) – 1, respectively. The updated code has no more magic number.

• Avoid repetitive code. The updated code uses an abstraction, the for k loop, to
replace the repetitive code of four print statements.

• Put constant definitions up front. The updated code differentiates constants from
variables. It puts the two constant definitions up front, i.e., in one place at the
beginning of the code. If we want to print out the code value for another student,
e.g., "Gordon Moore" instead of "Alan Turing", we only need to go to this single
conspicuous place to modify the code.

• Use comments to document the code. Five lines of comments are added to help
users understand the code. Such comments are called documentation of a
program. Documentation is not necessary for a program to execute. However,
proper documentation improves the understandability of code.

package main
import "fmt"
const studentName = "Alan Turing"
const maxCodeLength = 4 // student code has at most 4 digits
func main() {

sum := 0
for i := 0; i < len(studentName); i++ { // add up studentName to sum

sum = sum + int(studentName[i])
}
var sumBytes [maxCodeLength]byte // array to hold characters of sum
var j int
for j = len(sumBytes) - 1; sum != 0; j--

sumBytes[j] = byte(sum%10) + '0'
sum = sum / 10

}
var k int
for k = j + 1; k < len(sumBytes); k++ {

fmt.Printf("%c", sumBytes[k])
}

}

{ // extract each digit from sum

// print each digit of sum

fmt.Printf("\n")

Fig. 2.8 Program name_to_number-1.go with coding practice improvements

2.2 Programs as Symbols 57

2.2.4 Using Dynamic Programing to Compute Fibonacci
Number F(50)

This UKA unit serves two purposes: to show that solving a larger-scale problem may
need a smarter algorithm; and to show that smarter algorithms may need new
program structures (such digital symbols are often called programming language
constructs). It is done by writing two programs to compute larger Fibonacci
numbers in two methods, recursive and dynamic programming. Two new constructs
are introduced: function and slice. Figure 2.9 contrasts these two programs fib-50.go
and fib.dp-50.go.

package main
import "fmt"
func main() {

fmt.Println("F(50)=", fibonacci(50))
}
func fibonacci(n int) int {

if n == 0 || n == 1 {
return n

}

}

package main
import "fmt"
func main() {

fmt.Println("F(50)=", fibonacci(50))
}
func fibonacci(n int) int {

if n == 0 || n == 1 {
return n

}
var fib []int = make([]int, n+1) // make a slice fib
fib[0] = 0 // initialize fib[0] and fib[1]
fib[1] = 1
for i := 2; i <= n; i++ { // iteratively compute fib[i]

fib[i] = fib[i-1] + fib[i-2]
}
return fib[n]

}

(b)

(a)

return fibonacci(n-1)+fibonacci(n-2)

Fig. 2.9 The recursive and dynamic programming programs to compute Fibonacci numbers. (a)
Recursive fib-50.go. (b) Dynamic programming fib.dp-50.go

58 2 Processes of Digital Symbol Manipulation

A function is a sub-program to be used (called) by other statements in a program.
An example function definition starts with the keyword func:

func fibonacci(n int) int { . . . }

It consists of four parts: (1) a function name fibonacci, (2) an input parameter n of
integer type, (3) a return value of type int, and (4) a function body which is a
sequence of statements enclosed between the curly brackets { and }.

This fibonacci function is used (called) in the statement

fmt.Println("F(50)=", fibonacci(50))

by a function call fibonacci(50), where the parameter n assumes a value of 50. A
function can call itself. This recursive call is present in fib-50.go.

Program fib-50.go is almost the same as fib-10.go in Example 1.1. The only
difference is that we are computing a larger Fibonacci number F(50), instead of F
(10). The lecturer can compare these two programs by noticing their execution time.
The fib-50.go program, although very intuitive to the mathematic definition, is
painfully slow. It takes 3 minutes to output the result F(50) ¼ 12586269025. The
fib.dp-50.go program is much faster, taking just a second. The reason is that the
second program utilizes a smarter algorithmic method called dynamic program-
ming: intermediate results F(i-1) and F(i-2) are memorized and accessed to compute
F(i), as demonstrated in the loop structure containing statement fib[i] ¼ fib[i-1] + fib
[i-2]. This method avoids repetitions in computing F(i) multiple times in fib-50.go.

To support this memorization, a new data type called slice is used in the fib.dp-50.
go program. The statement

var fib []int = make([]int, n+1)

declares a slice variable fib which points to an underlying array of n+1 elements of
type int. The length of the slice is the length of the underlying array, which can be
found by calling len(fib). The ith element of the slice is accessed via fib[i], where the
index i starts from 0 to n, namely len(fib)-1. The make function is a system provided
function, which creates and returns a slice with an underlying array of n+1 elements
of type int. All n+1 elements of the slice are initialized with the zero value
(Fig. 2.10).

[0, 0, 0, …… , 0, 0]
0 1 2 …… n-1 nindex

slice name: fib
slice pointer:
slice length: n+1

slice length len(fib)

Fig. 2.10 Illustration of a slice variable fib, after statement var fib []int ¼ make([]int, n+1)

2.2 Programs as Symbols 59

https://doi.org/10.1007/978-981-16-3848-0_1#FPar1

After making the slice fib, the program first initializes the first two elements fib
[0] and fib[1], and then iteratively computes fib[i], such that all elements from fib
[0] to fib[50] are computed exactly once. The sequence of execution steps is like the
following:

fib[0] = 0
fib[1] = 1
fib[2] = fib[1] + fib[0] // fib[2] = 1 + 0 = 1
fib[3] = fib[2] + fib[1] // fib[3] = 1 + 1 = 2
. . .
. . .
fib[48] = fib[47] + fib[46] // fib[48] = 2971215073 + 1836311903

= 4807526976
fib[49] = fib[48] + fib[47] // fib[49] = 4807526976 + 2971215073

= 7778742049
fib[50] = fib[49] + fib[48] // fib[50] = 7778742049 + 4807526976

= 12586269025
return fib[50] // return 12586269025

Note that every newly computed Fibonacci value is stored (memorized) in slice
element fib[i] and later referenced. No Fibonacci value is computed more than once.

2.3 Computer as a Symbol-Manipulation System

The example of computing Fibonacci numbers shows that symbol manipulation
processes embodied in programs need the support of computer systems, to realize
basic arithmetic-logic operations, variable, function, loop, array, and slice.

We introduce a general model of computers in this section. It is called the stored
program architecture or stored program model, also known as the von Neumann
model or von Neumann architecture. We will use these terms interchangeably,
with this historical footnote.1

A computing system usually has three layers: hardware, system software, and
application software, as illustrated in Fig. 2.11. Students so far have used the High-
Level Language interface. This section introduces a low-level interface, i.e., com-
puter instructions, to see how computers work. Most computer hardware today
adopts a stored-program architecture with the following five characteristics.

1Although the term von Neumann architecture is widely used, it is controversial. A reason is that
this term comes from a manuscript written by John von Neumann in 1945 with the title First Draft
of a Report on the EDVAC. The original manuscript did not list any author. Herman Goldstine, a US
Army officer overseeing the ENIAC project, circulated the report with only von Neumann's name
on it. Some computer pioneers argued that key ideas in the report, including the stored program
concept, were not proposed by von Neumann. Some books in computer architecture use terms such
as “stored-program architecture”, instead of the term “von Neumann architecture”. See Biblio-
graphic Notes for details.

60 2 Processes of Digital Symbol Manipulation

• Binary. Data and instructions use binary representations.
• P-M-I/O. The computer hardware is comprised of three interconnected compo-

nents: processor, memory, and I/O devices.

– The processor is also called CPU, for central processing unit. It executes
instructions using an arithmetic logic unit (ALU) and a small number of
general-purpose registers, under the control of a control unit. A modern
processor may also contain other processing units, such as graphics processing
unit (GPU) and machine learning processing unit.

Hardware
Your Laptop Computer

System Software
Linux, Golang Compiler

Application Software
fib.dp.go

HLL Interface

Instruction Interface

Processor (CPU)

Registers and ALU

Control Unit

Memory

I/O
Input &

Output

Devices

I/O Bus

Memory Bus

Fig. 2.11 The stored-program model of computers, also known as the von Neumann model

2.3 Computer as a Symbol-Manipulation System 61

– The memory is also called main memory, accessed by CPU with an instruc-
tion. Registers may be considered special memory cells in CPU.

– I/O devices include hard disk, keyboard, mouse, display, printer, etc.

• Stored program. Both programs and data are stored in the memory and accessed
by processor.

• Instruction driven. The computer changes its state (the contents of memory and
registers) only when an instruction is executed.

• Serial execution. A computational process is a serial-execution process. Any
program is executed by automatically executing one instruction after another.

2.3.1 A Glimpse Inside a Computer

We can use the von Neumann model to look inside a computer, to see how the
components are organized and interconnected to form the hardware of a computer.
This more detailed inside organization is shown in Fig. 2.12.

The components in the right part of Fig. 2.12 are I/O devices. Processor and
memory are in the left part. They are interconnected by the memory bus and the I/O
bus. A popular I/O bus is the PCIE bus, for the Peripheral Component Interconnect
Express bus. An I/O Interface circuitry bridges the memory bus and the I/O bus. The
power unit (such as a battery) is also shown.

Motherboard is the main printed circuit board which provides a physical
substrate to host the memory bus, the I/O bus and the I/O Interface. All processor,

Keyboard

Display

Mouse

Hard Disk

USB

WiFi

Power

Core Core

Cache

Processor

Memory

Motherboard

Memory Bus

I/O
Bus

Bus

I/O Interface

I/O

Fig. 2.12 Illustration of how main components are organized to form a computer

62 2 Processes of Digital Symbol Manipulation

memory, I/O Interface microchips, and other circuitry interfacing the I/O devices, are
soldered on or plugged into the motherboard. The processor is a modern multicore
processor, capable of parallel processing. Each of the two cores is a CPU. A small
but fast memory, called cache, is also present in the processor.

It helps for each student to inventory his/her personal computer, e.g., laptop
computer, to make the above concepts more concrete and vivid. A hands-on exercise
is to list the main components of the computer according to the von Neumann model,
in the form of a table similar to Table 2.4, which contains data from a desktop
computer. This is an incomplete list, but already can lead to some interesting
questions. For instance, students have asked: why is a hard disk an I/O device?
The hard disk and the memory both stores data. Why do we distinguish them?

2.3.2 A Step-By-Step Process on a von Neumann Computer

To see why and how a computer is a symbol manipulation system, in this UKA unit
the students are asked to meticulously go through 16 steps of an example code,
where each step executes an instruction and forms a computer state transition.

The state of a computer at any time is comprised of the content of the main
memory and the content of the registers in the processor. We ignore the I/O devices
in this example. We consider only three types of registers here:

• General-purpose registers, denoted as R0, R1, R2.
• Special-purpose registers, two of which are used here.

– Status register FLAGS, which holds a set of status flag bits, to denote the status
of an instruction’s execution. Examples include whether the result is zero,
positive or negative, whether there is an overflow, etc.

– Program counter (PC), which holds the address of the instruction to be
executed next.

We show a step-by-step example how this Fibonacci Computer executes the
dominant part of the fib.dp-50.go program, i.e., the for loop structure:

Table 2.4 Parameters of a desktop computer according to von Neumann model

Processor Intel Core i5-4460 CPU @3.20 GHz, 6 MB cache

Memory 16 GB main memory

I/O devices Storage 640 GB hard disk

Keyboard Standard Dell keyboard

Display 2560�1440 resolution

Mouse Optical mouse

Network 100 Gbps Ethernet, 100 Mbps WiFi

2.3 Computer as a Symbol-Manipulation System 63

for i := 2; i < 51; i++ { // n+1 is 51 for F(50)
fib[i] = fib[i-1] + fib[i-2]

}

Code snippets of the Go language program (HLL interface) and the
corresponding assembly language code (instruction interface) are shown below
side by side, to highlight their correspondences. Assembly language code is a
sequence of instructions in human understandable form, instead of a string of 0’s
and 1’s. The two forms of code should be studied referring to the 17 tables in the
following pages, which show the state transitions of the computer hardware.

fib[0] = 0 MOV 0, R1
MOV R1, M[R0] //R0=12 initially

fib[1] = 1 MOV 1, R1
MOV R1, M[R0+8]

for i = 2; i < 51; i++ { MOV 2, R2 // i=2
fib[i] = fib[i-1] + fib[i-2] Loop: MOV 0, R1 // label Loop

ADD M[R0+R2*8-16], R1
ADD M[R0+R2*8-8], R1
MOV R1, M[R0+R2*8-0]
INC R2 // i++
CMP 51, R2 // i < 51?

} JL Loop // if Yes, goto Loop

Table 2.5 shows the initial state of the computer hardware. The binary code of the
twelve instructions is stored in the main memory from address 0 to address 11, each
instruction occupying one byte. In this example we assume the computer has only
these instructions. In general, the set of instructions a computer has available is
called the instruction set of that computer, which forms the instruction interface.

Note that address 5 has a label Loop, indicating the starting address of the loop in
the code. Addresses 12~419 hold data array fib, e.g., addresses 12~19 for fib[0],
20~27 for fib[1], etc. Each array element fib[i] is a 64-bit integer, needing 8 bytes.

Five registers are shown. FLAGS is the program status register, which holds
the status after an instruction’s execution, such as whether the compare instruction
(CMP) returns <, ¼, or >. PC is program counter, which holds the address of the
next instruction to be executed. PC ¼ 0 when the program initially starts. FLAGS
and PC belong to the Control Unit in Fig. 2.12.

The example also shows three general-purpose registers R0, R1, and R2. Register
R0 is used as a base register, which holds the base address of array fib, with an
initial value of 12, i.e., the address of fib[0]. Register R1 is used as an accumulator,
to hold the value of repetitive additions. Register R2 is used as an index register, to
hold the value of array index i in fib[i]. The address of an array element fib[i] is
calculated by address = base + index*8 + offset. The number 8 here is due to
8 bytes in a 64-bit integer.

Thus, to realize fib[i] ¼ fib[i-1] + fib[i-2], we need the following instructions:

64 2 Processes of Digital Symbol Manipulation

MOV 0, R1 // initialize accumulator R1 to 0
ADD M[R0+R2*8-16], R1 // R1+ fib[i-2]! R1
ADD M[R0+R2*8-8], R1 // R1+ fib[i-1]! R1
MOV R1, M[R0+R2*8-0] // R1! fib[i]

When i¼3, we compute fib[3]¼ fib[2] + fib[1]. We have base¼12, index¼3, and

fib[3] = fib[i-0]; its address is R0+R2*8-0=12+3*8-0=36; offset is 0
fib[2] = fib[i-1]: its address is R0+R2*8-8=12+3*8-8=28; offset is -8
fib[1] = fib[i-2]: its address is R0+R2*8-16=12+3*8-16=20; offset is

-16.

The next 16 tables on the next 8 pages each reflect a state of the computer after an
instruction is executed. We only show the steps till the value of fib[3] is computed.
Most steps (state transitions) exhibit changes in two places: a control state change in
PC and a data state change in a register or a memory location. We denote resulting
data of these state changes in boldface. The lecturer can ask the students to continue
drawing similar tables until the value of fib[4] is computed.

Note that these 16 tables show notations and memory layout simplified for ease of
learning. The following table shows a realistic, more complex initial state on an x86
processor using the AT&T assembly language notations (Table 2.6).

Table 2.5 Initial state: PC¼0, R0¼12; instructions addresses range 0~11, data addresses range
12~419. M[k] denotes the memory cell at address k

CPU contents Memory contents

Register Value Address Instruction Comments

FLAGS 0 MOV 0, R1 0!R1

PC 0 1 MOV R1, M[R0] R1!M[R0]

R0 12 2 MOV 1, R1 1!R1

R1 3 MOV R1, M[R0+8] R1!M[R0+8]

R2 4 MOV 2, R2 2!R2

R0: base register 5 Loop MOV 0, R1 0!R1

Initial value¼12 6 ADD M[R0+R2*8-16], R1 R1+ M[R0+R2*8-16]! R1

7 ADD M[R0+R2*8-8], R1 R1+ M[R0+R2*8-8]! R1

R1: accumulator 8 MOV R1, M[R0+R2*8-0] R1! M[R0+R2*8-0]

R2: index
register

9 INC R2 R2+1!R2

Address¼base
+index*8+offset

10 CMP 51, R2 Compare R2 to 51, status!FLAGS

11 JL Loop If FLAGS is “<”, Loop!PC

fib[i-2]’s address 12 fib[0]

¼R0+R2*8 -16 20 fib[1]

28 fib[2]

fib[0]’s address 36 fib[3]

¼12+2*8-
16¼12

.

412 fib[50]

2.3 Computer as a Symbol-Manipulation System 65

Step 1: 0!R1. Also, PC PC+1¼1.
CPU Contents Memory Contents

Register Value Address Instruction

FLAGS 0 MOV 0, R1

PC 1 1 MOV R1, M[R0]

R0 12 2 MOV 1, R1

R1 0 3 MOV R1, M[R0+8]

R2 4 MOV 2, R2

5 Loop MOV 0, R1

6 ADD M[R0+R2*8-16], R1

7 ADD M[R0+R2*8-8], R1

8 MOV R1, M[R0+R2*8-0]

9 INC R2

10 CMP 51, R2

11 JL Loop

12

20

28

36

Table 2.6 The same initial state on an x86 processor

CPU Content Memory Content

Register Value Address Instruction

eflags 0x672 mov $0, %rbx

rip 0x672 0x679 mov %rbx, 0(%rax)

rax 0x201010 0x67c mov $1, %rbx

rbx 0 0x683 mov %rbx, 8(%rax)

rsi 0 0x687 mov $2, %rsi

0x68e<for_loop> mov $0, %rbx

0x695 add -16(%rax, %rsi, 8), %rbx

0x69a add -8(%rax, %rsi, 8), %rbx

0x69f mov %rbx, (%rax, %rsi, 8)

0x6a3 inc %rsi

0x6a6 cmp $50, %rsi

0x6aa jl 68e

0x201010

0x201018

0x201020

0x201028

66 2 Processes of Digital Symbol Manipulation

Step 2:R1!M[R0], i.e., 0!M[12]. Also, PC PC+1¼2.
CPU Content Memory Content

Register Value Address Instruction

FLAGS 0 MOV 0, R1

PC 2 1 MOV R1, M[R0]

R0 12 2 MOV 1, R1

R1 0 3 MOV R1, M[R0+8]

R2 4 MOV 2, R2

5 Loop MOV 0, R1

6 ADD M[R0+R2*8-16], R1

7 ADD M[R0+R2*8-8], R1

8 MOV R1, M[R0+R2*8-0]

9 INC R2

10 CMP 51, R2

11 JL Loop

12 0
20

28

36

Step 3: 1!R1. Also, PC PC+1¼3.
CPU Content Memory Content

Register Value Address Instruction

FLAGS 0 MOV 0, R1

PC 3 1 MOV R1, M[R0]

R0 12 2 MOV 1, R1

R1 1 3 MOV R1, M[R0+8]

R2 4 MOV 2, R2

5 Loop MOV 0, R1

6 ADD M[R0+R2*8-16], R1

7 ADD M[R0+R2*8-8], R1

8 MOV R1, M[R0+R2*8-0]

9 INC R2

10 CMP 51, R2

11 JL Loop

12 0

20

28

36

2.3 Computer as a Symbol-Manipulation System 67

Step 4: R1!M[R0+8], i.e., 1!M[20]. Also, PC PC+1¼4.
CPU Content Memory Content

Register Value Address Instruction

FLAGS 0 MOV 0, R1

PC 4 1 MOV R1, M[R0]

R0 12 2 MOV 1, R1

R1 1 3 MOV R1, M[R0+8]

R2 4 MOV 2, R2

5 Loop MOV 0, R1

6 ADD M[R0+R2*8-16], R1

7 ADD M[R0+R2*8-8], R1

8 MOV R1, M[R0+R2*8-0]

9 INC R2

10 CMP 51, R2

11 JL Loop

12 0

20 1
28

36

Step 5: 2!R2. Also, PC PC+1¼5.
CPU Content Memory Content

Register Value Address Instruction

FLAGS 0 MOV 0, R1

PC 5 1 MOV R1, M[R0]

R0 12 2 MOV 1, R1

R1 1 3 MOV R1, M[R0+8]

R2 2 4 MOV 2, R2

5 Loop MOV 0, R1

6 ADD M[R0+R2*8-16], R1

7 ADD M[R0+R2*8-8], R1

8 MOV R1, M[R0+R2*8-0]

9 INC R2

10 CMP 51, R2

11 JL Loop

12 0

20 1

28

36

68 2 Processes of Digital Symbol Manipulation

Step 6: 0!R1. Also, PC PC+1¼6.
CPU Content Memory Content

Register Value Address Instruction

FLAGS 0 MOV 0, R1

PC 6 1 MOV R1, M[R0]

R0 12 2 MOV 1, R1

R1 0 3 MOV R1, M[R0+8]

R2 2 4 MOV 2, R2

5 Loop MOV 0, R1

6 ADD M[R0+R2*8-16], R1

7 ADD M[R0+R2*8-8], R1

8 MOV R1, M[R0+R2*8-0]

9 INC R2

10 CMP 51, R2

11 JL Loop

12 0

20 1

28

36

Step 7: R1+M[R0+R2*8-16]!R1, i.e., 0+M[12]!R1. Also, PC PC+1¼7.
CPU Content Memory Content

Register Value Address Instruction

FLAGS 0 MOV 0, R1

PC 7 1 MOV R1, M[R0]

R0 12 2 MOV 1, R1

R1 0 3 MOV R1, M[R0+8]

R2 2 4 MOV 2, R2

5 Loop MOV 0, R1

6 ADD M[R0+R2*8-16], R1

7 ADD M[R0+R2*8-8], R1

8 MOV R1, M[R0+R2*8-0]

9 INC R2

10 CMP 51, R2

11 JL Loop

12 0

20 1

28

36

2.3 Computer as a Symbol-Manipulation System 69

Step 8: R1+M[R0+R2*8-8]!R1, i.e., 0+M[20]!R1. Also, PC PC+1¼8.
CPU content Memory content

Register Value Address Instruction

FLAGS 0 MOV 0, R1

PC 8 1 MOV R1, M[R0]

R0 12 2 MOV 1, R1

R1 1 3 MOV R1, M[R0+8]

R2 2 4 MOV 2, R2

5 Loop MOV 0, R1

6 ADD M[R0+R2*8-16], R1

7 ADD M[R0+R2*8-8], R1

8 MOV R1, M[R0+R2*8-0]

9 INC R2

10 CMP 51, R2

11 JL Loop

12 0

20 1

28

36

Step 9: R1!M[R0+R2*8-0], i.e., 1!M[28]. Also, PC PC+1¼9.
CPU content Memory content

Register Value Address Instruction

FLAGS 0 MOV 0, R1

PC 9 1 MOV R1, M[R0]

R0 12 2 MOV 1, R1

R1 1 3 MOV R1, M[R0+8]

R2 2 4 MOV 2, R2

5 Loop MOV 0, R1

6 ADD M[R0+R2*8-16], R1

7 ADD M[R0+R2*8-8], R1

8 MOV R1, M[R0+R2*8-0]

9 INC R2

10 CMP 51, R2

11 JL Loop

12 0

20 1

28 1
36

70 2 Processes of Digital Symbol Manipulation

Step 10: R2+1!R2. Also, PC PC+1¼10.
CPU content Memory content

Register Value Address Instruction

FLAGS 0 MOV 0, R1

PC 10 1 MOV R1, M[R0]

R0 12 2 MOV 1, R1

R1 1 3 MOV R1, M[R0+8]

R2 3 4 MOV 2, R2

5 Loop MOV 0, R1

6 ADD M[R0+R2*8-16], R1

7 ADD M[R0+R2*8-8], R1

8 MOV R1, M[R0+R2*8-0]

9 INC R2

10 CMP 51, R2

11 JL Loop

12 0

20 1

28 1

36

Step 11: Compare R2 to 51, result "<"!FLAGS. Also, PC PC+1¼11.
CPU content Memory content

Register Value Address Instruction

FLAGS < 0 MOV 0, R1

PC 11 1 MOV R1, M[R0]

R0 12 2 MOV 1, R1

R1 1 3 MOV R1, M[R0+8]

R2 3 4 MOV 2, R2

5 Loop MOV 0, R1

6 ADD M[R0+R2*8-16], R1

7 ADD M[R0+R2*8-8], R1

8 MOV R1, M[R0+R2*8-0]

9 INC R2

10 CMP 51, R2

11 JL Loop

12 0

20 1

28 1

36

2.3 Computer as a Symbol-Manipulation System 71

Step 12: If FLAGS is <, Loop!PC. Loop is 5, 5!PC.

CPU content Memory content

Register Value Address Instruction

FLAGS < 0 MOV 0, R1

PC 5 1 MOV R1, M[R0]

R0 12 2 MOV 1, R1

R1 1 3 MOV R1, M[R0+8]

R2 3 4 MOV 2, R2

5 Loop MOV 0, R1

6 ADD M[R0+R2*8-16], R1

7 ADD M[R0+R2*8-8], R1

8 MOV R1, M[R0+R2*8-0]

9 INC R2

10 CMP 51, R2

11 JL Loop

12 0

20 1

28 1

36

Step 13: 0!R1. Also, PC PC+1¼6.
CPU content Memory content

Register Value Address Instruction

FLAGS < 0 MOV 0, R1

PC 6 1 MOV R1, M[R0]

R0 12 2 MOV 1, R1

R1 0 3 MOV R1, M[R0+8]

R2 3 4 MOV 2, R2

5 Loop MOV 0, R1

6 ADD M[R0+R2*8-16], R1

7 ADD M[R0+R2*8-8], R1

8 MOV R1, M[R0+R2*8-0]

9 INC R2

10 CMP 51, R2

11 JL Loop

12 0

20 1

28 1

36

72 2 Processes of Digital Symbol Manipulation

Step 14: R1+M[R0+R2*8-16]!R1, i.e., 0+M[20]!R1. Also, PC PC+1¼7.
CPU content Memory content

Register Value Address Instruction

FLAGS < 0 MOV 0, R1

PC 7 1 MOV R1, M[R0]

R0 12 2 MOV 1, R1

R1 1 3 MOV R1, M[R0+8]

R2 3 4 MOV 2, R2

5 Loop MOV 0, R1

6 ADD M[R0+R2*8-16], R1

7 ADD M[R0+R2*8-8], R1

8 MOV R1, M[R0+R2*8-0]

9 INC R2

10 CMP 51, R2

11 JL Loop

12 0

20 1

28 1

36

Step 15: R1+M[R0+R2*8-8]!R1, i.e., 1+M[28]!R1. Also, PC PC+1¼8.
CPU content Memory content

Register Value Address Instruction

FLAGS < 0 MOV 0, R1

PC 8 1 MOV R1, M[R0]

R0 12 2 MOV 1, R1

R1 2 3 MOV R1, M[R0+8]

R2 3 4 MOV 2, R2

5 Loop MOV 0, R1

6 ADD M[R0+R2*8-16], R1

7 ADD M[R0+R2*8-8], R1

8 MOV R1, M[R0+R2*8-0]

9 INC R2

10 CMP 51, R2

11 JL Loop

12 0

20 1

28 1

36

2.3 Computer as a Symbol-Manipulation System 73

Step 16: R1!M[R0+R2*8-0], i.e., 1!M[36]. Also, PC PC+1¼9.
CPU content Memory content

Register Value Address Instruction

FLAGS < 0 MOV 0, R1

PC 9 1 MOV R1, M[R0]

R0 12 2 MOV 1, R1

R1 2 3 MOV R1, M[R0+8]

R2 3 4 MOV 2, R2

5 Loop MOV 0, R1

6 ADD M[R0+R2*8-16], R1

7 ADD M[R0+R2*8-8], R1

8 MOV R1, M[R0+R2*8-0]

9 INC R2

10 CMP 51, R2

11 JL Loop

12 0

20 1

28 1

36 2

2.4 Exercises

1. The binary representation of decimal number 14.875 is:

(a) 1110.111
(b) 1111.011
(c) 1110.101
(d) 1111.101

2. The binary representation of the two’s complement of integer -12 is:

(a) 00001100
(b) 10001100
(c) 01110100
(d) 11110100

3. In Sect. 2.1, there is a question mark in the table about temperature in Beijing.
The temperature in question has a value of 32 �C, which cannot be represented
with only 5 bits. How to fix this problem?

(a) Use 6 bits to represent temperature values from 0y�C to 63 �C.
(b) Represent 32 �C and every other higher temperature by 11111, which is

already used as the representation for 31 �C.

74 2 Processes of Digital Symbol Manipulation

(c) Represent 32 �C and every other higher temperature by 11111 and signals an
overflow.

(d) Use 5 bits in only those scenarios where the temperature values are
constrained to the range from 0 �C to 31 �C.

4. Consider the design of a digital display for a thermometer. We need to convert
analog temperature signals between �50 �C to 50 �C into digital display
symbols. In other words, we need to be able to display all temperature readings:
�50, �49 . . ., �01, 00, 01, . . ., 49, 50. How many bits are needed with each of
the following three number representations? Put the correct capital letter in the
parentheses of each line below.

(a) The unsigned integer format needs () X: 6 bits
(b) The simple signed integer format needs () Y: 7 bits
(c) The two’s complement format needs () Z: Can not be done

5. Consider the following three number representations for eight-bit numbers. Put
the correct capital letter in the parentheses of each line below.

(a) The smallest value of unsigned integer is () U: 00000000
(b) The largest value of unsigned integer is () V: 00000001
(c) The smallest value of simple signed integer is () W: 01111111
(d) The largest value of simple signed integer is () X: 10000000
(e) The smallest value of two’s complement is () Y: 10000001
(f) The largest value of two’s complement is () Z: 11111111

6. Consider the three number representations for eight-bit numbers. To show
overflow conditions, put the correct capital letter in the parentheses of each
line below.

(a) For unsigned integers, the result is smaller than () U: -128
(b) For unsigned integers, the result is larger than () V: -127
(c) For simple signed integers, the result is smaller than () W: 0
(d) For simple signed integers, the result is larger than () X: 127
(e) For two’s complement integers, the result is smaller than () Y: 128
(f) For two’s complement integers, the result is larger than () Z: 255

7. Refer to the algorithm for 8-bit integer adder in Sect. 2.1. Design an algorithm
for a two’s complement subtractor computing C¼A-B, where A, B, C are 8-bit
integers in two’s complement representation. Verifying the correctness of the
subtractor by putting the correct capital letter in the parentheses of each line
below.

(a) When A¼63 and B¼64, the result of 63-64 is () V: 00000000
(b) When A¼-63 and B¼64, the result of (-63)-64 is () W: 00000001
(c) When A¼64 and B¼63, the result of 64-63 is () X: 01111111
(d) When A¼64 and B¼-63, the result of 63-(-64) is () Y: 10000001
(e) When A¼-64 and B¼-63, the result of (-64)-(-63) is () Z: 11111111

2.4 Exercises 75

8. To represent ASCII characters, put the correct capital letter in the parentheses of
each line below. Note that there are three types of number representations:
binary, decimal, and hexadecimal.

(a) 000000002 is the ASCII encoding for the character () U: NUL
(b) 5A16 is the ASCII encoding for the character () V: SP
(c) 9710 is the ASCII encoding for the character () W: 0
(d) 0x20 is the ASCII encoding for the character () X: a
(e) 4810 is the ASCII encoding for the character () Y: Z
(f) 001010112 is the ASCII encoding for the character () Z: +

9. To display the question mark symbol, the correct statement is:

(a) fmt.Printf(“%c”, ‘?’)
(b) fmt.Printf(“%b”, 63)
(c) fmt.Printf(“%c”, 63)
(d) fmt.Printf(“%d”, 63)
(e) fmt.Printf(“%c”, ?)
(f) fmt.Printf(“%c”, ‘63’)

10. To print out the ASCII symbol for escape (ESC), the correct statement is:

(a) fmt.Printf(“%c”, ‘ESC’)
(b) fmt.Printf(“%c”, 00011011)
(c) fmt.Printf(“%c”, 27)
(d) fmt.Printf(“%c”, ‘27’)

11. Regarding integer division and the mod operation, which of the following
statements are/is correct?

(a) 18 / 10 ¼ 1.8
(b) 18 / 10 ¼ 1
(c) 18 % 10 ¼ 8
(d) 18 mod 10 ¼ 1

12. The following program compares student name to a character string to see how
many common characters there are.

package main
import "fmt"
func main() {

var name string = "Alan Turing"
var cs string = "Computer Science"
sum := 0
for i := 0; i < 11; i++ {

for j := 0; j < len(cs); j++ {
if name[i]==cs[j] {sum++}

}
}
fmt.Printf("%d\n", sum)

}

76 2 Processes of Digital Symbol Manipulation

The correct output is:

(a) 5
(b) 6
(c) 7
(d) 8
(e) 9

13. The following program does the same thing as Exercise 12. However, it follows
good programming practice and is easier for human to understand.

package main
import "fmt"
const studentName = "Alan Turing"
const targetString = "Computer Science"
func main() {

sum := 0
for i := 0; i < len(studentName); i++ {

for j := 0; j < len(targetString); j++ {
if studentName[i]==targetString[j] {

sum = sum + 1
}

}
}
fmt.Printf("%d\n", sum)

}

How has the new code improved over the code in Exercise 12?

(a) The two const statements use descriptive names studentName and
targetString, instead of using non-descriptive name and cs.

(b) The two const statements use constant declaration, instead of variable
declaration. Constant declaration is more appropriate since the two entities
studentName and targetString do not change their values in the code.

(c) In the outer for loop, the expression i < len(studentName) gets rid of the
magic number 11 in the expression i < 11 of the old code.

(d) Code of the main function does not depend on the specific values of
studentName and targetString. We can compare a new student name, e.g.,
by changing "Alan Turing" to "Gordon Moore". The old code will fail.

(e) The new code has no improvement, because the code is longer.

14. Personalized programming exercise. Write a Go program to output the student
code in the following way. Suppose Alan Turing’s studentName "Alan Turing"
and his studentNumber 8009970023 are given. Compute the sum of the ASCII
encoding values of the eleven characters in the string "Alan Turing"; compute
studentCode ¼ studentNumber / sum / sum; then output the value of
studentCode. For Alan Turing, the program outputs 7334.

Each student (e.g., Ada Smith) uses her/his student name and student number
to generate the student code, with three constraints: (1) only format verb %c is

2.4 Exercises 77

used; (2) student number is a 10-digit decimal number; and (3) the program
should follow good programming practice.

15. The von Neumann model of computer has the following features:

(a) A computer consists of interconnected processor, memory and I/O devices.
(b) Symbols are represented as binary digits (bits).
(c) Data and programs are stored in memory.
(d) A program is serially executed by executing one instruction after another.

16. Which of the following statements are/is correct for a typical computer?

(a) The address of the instruction to be executed next is stored in the program
counter (PC).

(b) Every computer has an instruction set.
(c) A program in execution has a Standard Input, a Standard Output, and a

Standard Error devices.
(d) A hard disk stores data. So, it is a memory device, not an I/O device.

17. Which of the following statements are/is correct regarding the state of a von
Neumann computer?

(a) The state of a computer refers to the contents of the registers.
(b) The state of a computer refers to the contents of the memory.
(c) The state of a computer refers to the contents of the I/O devices.
(d) The state of a computer refers to the contents of the registers, the memory,

and the I/O devices. However, this chapter focuses on the contents of the
registers and the memory.

18. We want to use base, index and offset to find the byte address in memory of an
array element a[i] of 64-bit integer. Given base¼200 and index i¼3, which of
the following statements are/is correct?

(a) The byte address of a[i] is 224, because address¼ base + index*8 + offset¼
200 + 3*8 + 0 ¼ 224.

(b) The byte address of a[i] is 211, because address ¼ base + index + offset ¼
200 + 3 + 8 ¼ 211.

(c) The byte address of a[i] is 267, because address ¼ base + index + offset ¼
200 + 3 + 64 ¼ 267.

(d) The byte address of a[i] is 392, because address ¼ base + index*64 + offset
¼ 200 + 3*64 + 0 ¼ 392.

19. Consider the loop body fib[i] ¼ fib[i-1] + fib[i-2] in Fig. 2.8. Suppose the
address of fib[i] is R0+R2*8. Which of the following statements are/is correct?

(a) The address of fib[i-1] is R0+R2*8-8.
(b) The address of fib[i-2] is R0+R2*8-8.
(c) The address of fib[i-1] is R0+R2*8-16.
(d) The address of fib[i-2] is R0+R2*8-16.

78 2 Processes of Digital Symbol Manipulation

20. Refer to Table 2.5 and associated explanation text. Assume part of the initial
computer state is shown in the following table.

CPU content Memory content

FLAGS PC R0 R1 R2 M[12] M[20] M[28] M[[36]

< 0 12 6 3 2 1 2 3

How will the computer state change after executing each of the following
instructions? Put the correct capital letter in the parentheses of each line below.

(a) MOV 0, R1 makes () U: FLAGS¼'<'
(b) MOV R1, M[R0+R2*8+8] makes () V: M[44]¼6
(c) ADD M[R0+R2*8-16], R1 makes () W: PC¼5
(d) INC R2 makes () X: R1¼0
(e) CMP 51, R2 makes () Y: R1¼7
(f) JL 5 makes () Z: R2¼4

21. Refer to Table 2.5 and associated explanation text. Assume part of the initial
computer state is shown in the following table.

CPU contents Memory contents

FLAGS PC R0 R1 R2 M[12] M[20] M[28] M[[36]

< 0 12 6 3 2 1 2 3

How will the computer state change after executing each of the following
instructions? Put the correct capital letter in the parentheses of each line below.

(a) MOV 0, R1 makes () U: PC¼0
(b) MOV R1, M[R0+R2*8+8] makes () V: PC¼1
(c) ADD M[R0+R2*8-16], R1 makes () W: PC¼2
(d) INC R2 makes () X: PC¼3
(e) CMP 51, R2 makes () Y: PC¼4
(f) JL 5 makes () Z: PC¼5

22. Digital symbols can be used to represent the following entities.

(a) Numbers, such as integers, floating-point numbers, natural numbers.
(b) Characters, such as ASCII symbols and Chinese characters.
(c) Media contents, such as texts, picture, audio, video, books.
(d) Processes of human endeavor, such as business processes, scientific pro-

cesses, computational processes.

23. Fill out the following form of von Neumann model with data from your personal
computer. Some example parameters of the lecturer’s computer are shown in
Table 2.4.

2.4 Exercises 79

Processor

Memory

I/O devices Storage

Keyboard

Display

Mouse

Network

2.5 Bibliographic Notes

The chapter quotation is from Herbert Simon and Allen Newell [1], two pioneers of
artificial intelligence. The term “von Neumann architecture” and its controversy can
be found at [2, 3]. The website [4] offers an introductory tour of Go programming,
with accessible hands-on examples.

References

1. Simon HA, Newell A (1976) Computer science as empirical inquiry: symbols and search.
Commun ACM 19(3):11–126

2. Moye WT (1996) ENIAC: the Army-sponsored revolution. US Army Research Laboratory. ftp.
arl.army.mil/mike/comphist/96summary/index.html

3. O’Regan G (2018) Von Neumann architecture. In: The innovation in computing companion.
Springer, Cham, pp 257–259

4. https://tour.golang.org/welcome/1

80 2 Processes of Digital Symbol Manipulation

http://ftp.arl.army.mil/mike/comphist/96summary/index.html
http://ftp.arl.army.mil/mike/comphist/96summary/index.html
https://tour.golang.org/welcome/1

Chapter 3
Logic Thinking

Computer science is the continuation of logic by other means.
—Georg Gottlob, 2009

Logic thinking is concerned with one of the key questions in computer science: what
kind of problems can be correctly solved by computational processes? This question
can be broken down into two issues:

• The correctness issue. How to rigorously define correctness of computational
processes? In doing so, we can have a rigorous definition of computable prob-
lems: those problems for which there exist correct computational processes.

• The generality issue. Is there a computer that can be used to solve any comput-
able problem?

We introduce two bit-accurate models of computation: Boolean logic and Turing
machine, to rigorously define and analyze the correctness and generality of compu-
tational processes. Four main points are emphasized:

• With Boolean logic and Turing machine, we are able to accurately model a
problem and the computational process to solve the problem. We can also define
and verify the correctness of the solution.

• The above method is universal, that is, Boolean logic and Turing machine can be
used to model all computable problems and their solutions.

• Boolean logic and Turing machines have limitations. There exist undecidable
problems, paradoxes and incompleteness theorems.

• Logic thinking in computer science has differences from logic thinking of other
sciences. Logic thinking in computer science emphasizes bit accuracy and auto-
matic execution.

We proceed in the following sequence.

• To ensure the correctness of a computational process, we make sure that each step
of the process is correct and that compositions of steps are correct.

• To ensure one step is correct, we use Boolean logic.
• To ensure the correctness of multiple steps, we use Turing machines.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
Z. Xu, J. Zhang, Computational Thinking: A Perspective on Computer Science,
https://doi.org/10.1007/978-981-16-3848-0_3

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3848-0_3&domain=pdf
https://doi.org/10.1007/978-981-16-3848-0_3#DOI

• To see the power and limitation of Turing machines, we study Church-Turing
Hypothesis and Gödel’s incompleteness theorems.

3.1 Boolean Logic

Boolean logic is a formal logic system to reason about logic statements which can
have true (1) or false (0) values. Boolean logic has manifested in propositional logic
and predicate logic. It is a perfect match for computer science, because computers
use binary values of 0 and 1 to represent digital symbols.

We first use three examples to illustrate what problems can be solved by Boolean
logic. Solutions to these problems will be provided in later examples.

• The Congruent Triangles Problem, to show that Boolean logic can be used to
solve mathematic problems, without using mathematic domain knowledge.

• The Impatient Guide Problem, to illustrate that problems in many application
domains can be encoded as Boolean logic problems.

• The Adder Implementation Problem, to show that many computer hardware
components can be implemented as Boolean logic expressions.

Example 3.1. The Congruent Triangles Problem
Let us consider a statement in geometry: congruent triangles are also similar. More
precisely, if two triangles are congruent, they are also similar.

We are taught in geometry class that this statement is true. The teacher may even
have shown us a proof, using geometry knowledge.

Now consider another statement, which is related to the original statement:
If two triangles are not similar, then they are not congruent.
Logic thinking can be used to show that the second statement holds. The proof is

very simple. More importantly, it does not involve any knowledge in geometry.
☶

Example 3.2. The Impatient Guide Problem
A tourist is traveling in the land of Oz and wants to go to the Emerald City. The
tourist reaches a crossroad with paths P and Q, one of which leads to the Emerald
City. There is a guide G at the crossroad, who comes from either the Honest Village
or the Lying Village. Anyone from the Honest Village always tells the truth, and
anyone from the Lying Village always tells lies. The guide is impatient, in that G
only answers one question from the tourist, and the answer is either “Yes” or “No”.

What question should the tourist ask the guide, to determine the correct path?
☶

Example 3.3. The Adder Implementation Problem
In this example, we realize the addition operation of two n-bit numbers with Boolean
logic. This book asks students to realize adders in several contexts, because adders
are simple and fundamental. If we can do addition, we can also do many other
operations.

☶

82 3 Logic Thinking

3.1.1 Propositional Logic

Propositional logic is a logic system for reasoning about combinational propositions
made of propositional variables and logic connectives. An example is the proposition
“If the Earth is flat, then Alan Turing is a computer scientist”. In this section, we will
learn how to understand such a proposition and how to decide whether it is true or false.

3.1.1.1 Propositions and Logic Connectives

A proposition is a declarative sentence which has a truth-value, that is, being true or
false. For example, “this book is written in English”; “Beijing is China’s capital
city”. A proposition can contain one or more other propositions as parts. For
example, “5 is a prime number and 5 � 1 (mod 4)”.

We use variables x, y, z to denote proposition, and x ¼ 1 means proposition x is
true while x ¼ 0 means proposition x is false.

The word “and” in the previous ample is a logic connective called conjunction.
Propositional logic largely involves studying these kinds of logical connectives and
the rules determining the truth-values of the propositions combined from simpler
propositions and collectives. Five logical connectives are commonly used. Their
definitions and illustrative examples are shown in Box 3.1.

Box 3.1. Commonly Used Logic Connectives
• Conjunction ^ (also called AND): x ^ y ¼ 1 if and only if x ¼ y ¼ 1.

For example, the solution of x2 + 2x < 0 is x > � 2 and x < 0. We can
describe it as (x > � 2) ^ (x < 0).

• Disjunction _ (also called OR): x _ y ¼ 0 if and only if x ¼ y ¼ 0.
For example, the solution of x2 + 2x � 0 satisfies x � � 2 or x � 0. We

can describe it as (x � � 2) _ (x � 0).
• Negation Ø (also called NOT): Øx ¼ 0 if and only if x ¼ 1.

We also use x to represent the negation of x, that is, �x ¼ Øx.
• Implication!: (x!y) ¼ 1 if and only if x ¼ 0 or y ¼ 1.

We call x premise and y conclusion. Implication means x!y ¼ 1 if and
only if the premise is false or the conclusion is true.

• Exclusive-or (also called XOR)
L

: x
L

y ¼ 1 if and only if x 6¼ y.
That is, x

L
y is true iff either x or y (but not both) is true. Note

x
L

1¼ Ø x, that is, we can use exclusive-or operation to realize negation.

Four of the five connectives are straightforward. The implication connective may
look strange for beginners to logic. A key observation is that a false premise implies
anything! Thus, both of the following propositions are true:

The Earth is flat! Alan Turing is a computer scientist
The Earth is flat! Alan Turing is not a computer scientist

3.1 Boolean Logic 83

3.1.1.2 Truth Table

For any proposition, we can list its truth values on all of the possible combinations of
values of the variables, to form its truth table. The following table lists the truth
values for conjunction, disjunction, implication, and exclusive-or operations, given
the combinations of the truth values of propositional variables x and y (Table 3.1).

3.1.1.3 Properties of Logic Connectives

We call a proposition without connectives a primitive proposition, and a proposition
with one or more connectives a combinational proposition. The truth value of a
primitive proposition is not decided by proposition logic, but by the environment or
context where the primitive proposition is made. Proposition logic is concerned with
the truth values of combinational propositions, given the truth values of their
primitive propositions and the combinations with logic connectives.

From definitions of logic connectives in Box 3.1, we can derive basic properties
of propositional logic, as listed in Table 3.2. Additional properties are listed in
Table 3.3. We omit the proof and the reader can use truth table to verify these
properties.

A simple way to learn these properties is to contrast them to the logic we learned
from high-school math or algebra classes. Some basic properties of propositional
logic in Table 3.2 do not hold in high-school logic, shown in red. Note that we use

Table 3.1 Truth table for
conjunction, disjunction,
implication, and exclusive-or

x y x ^ y x _ y x!y x
L

y

0 0 0 0 1 0

0 1 0 1 1 1

1 0 0 1 0 1

1 1 1 1 1 0

Table 3.2 Basic properties of propositional logic

Law Logic equivalence School logic (assume x¼2, y¼3, z¼4)
Associativity (x • y) • z ¼ x • (y • z), (2 • 3) • 4 ¼ 2 • (3 • 4)

(x + y) + z ¼ x + (y + z) (2 + 3) + 4 ¼ 2 + (3 + 4)

Commutativity x • y ¼ y • x 2 • 3 ¼ 3 • 2

x + y ¼ y + x 3 + 2 ¼ 2 + 3

Distributivity (x + y) • z ¼ (x • z) + (y • z) (2 + 3) • 4 ¼ (2 • 4) + (3 • 4)

(x • y) + z ¼ (x + z) • (y + z) (2 • 3) + 4 6¼ (2 + 4) • (3 + 4)

Identity x + 0 ¼ x, x • 1 ¼ x 2 + 0 ¼ 2, 2 • 1 ¼ 2

Annihilator x • 0 ¼ 0, x + 1 ¼ 1 2 • 0 ¼ 0, 2 + 1 6¼ 1

Idempotence x • x ¼ x, x + x ¼ x 2 • 2 6¼ 2, 2 + 2 6¼ 2

Absorption (x • y) + x ¼ x, (x + y) • x ¼ x (2 • 3) + 2 6¼ 2, (2 + 3) • 2 6¼ 2

Complementation x + Øx ¼ 1, x • Øx ¼ 0 N/A

84 3 Logic Thinking

the more familiar addition symbol + and multiplication symbol • from school
classes, to denote disjunction (_) and conjunction (^).

The associativity, commutativity, and identity laws hold for both propositional
logic and high school mathematical logic. However, the distributivity and the
annihilator laws only hold for multiplication but not addition. In high school math,
multiplication distributes over addition, e.g., (2 + 3) • 4 ¼ (2 • 4) + (3 • 4), but not
addition distributed over multiplication, e.g., (2 • 3) + 4 6¼ (2 + 4) • (3 + 4). The other
three laws of idempotence, absorption, and complementation do not hold at all in
high school math.

Table 3.3 lists additional properties for propositional logic which mainly consider
negation, implication, and exclusive-or operations.

3.1.1.4 Boolean Expression and Boolean Function

When we view logic connectives as operators, primitive and combinational propo-
sitions will become Boolean expressions. More formally, the set L of all Boolean
expressions is recursively defined as follows.

1. Initially, let 0, 1, x1, . . ., xn 2 L, where x1, . . ., xn are primitive propositions for
some natural number n. We also call 0 and 1 Boolean constants, and x1, . . ., xn
Boolean variables.

2. Recursively apply negation, conjunction, disjunction, implication, and exclusive-
or operations: If x, y 2 L, then Øx, x • y, x + y, x!y, x

L
y 2 L. Use the basic

properties in Table 3.2 or 3.3 (sometimes called Boolean algebra axioms) to
reduce all equivalent expressions into one expression.

3. Repeat Step 2 until L does not change any more.

We also have the notion of Boolean functions. An n-input-1-output Boolean
function is a mathematical function f : {0, 1}n!{0, 1}, and the mapping is defined
by the truth table of f. For instance, the equation y ¼ x1

L
x2
L

⋯
L

xn defines a
Boolean function to find the parity of x1, x2, ⋯, xn, where the output is y and the
n inputs are x1, x2, ⋯, xn.

Table 3.3 Additional properties of propositional logic

Law Logic equivalence

De Morgan law x ^ y ¼ x _ y, x _ y ¼ x ^ y

Implication defined in _ , Ø x! y ¼ x _ y

XOR defined in ^, _ , Ø x
L

y ¼ x ^ yð Þ _ x ^ yð Þ, xL y ¼ x _ yð Þ ^ x _ yð Þ
Associativity for XOR x

L
(y

L
z) ¼ (x

L
y)

L
z

Commutativity for XOR x
L

y ¼ y
L

x

Identity for XOR x
L

0 ¼ x, x
L

1 ¼ x

3.1 Boolean Logic 85

3.1.1.5 Normal Forms

Given any Boolean expression, we can use the basic properties of Tables 3.2 and 3.3
to find an equivalent expression which contains only AND, OR, and NOT. For
example, x _ yð Þ ! z ¼ x _ yð Þ _ z ¼ x ^ yð Þ _ z ¼ x _ zð Þ ^ y _ zð Þ . Note that
there are several different ways to present an expression with only AND, OR, and
NOT. For example, the above example provides three different ways to represent
(x _ y)!z with only AND, OR, and NOT. However, there is a uniform way to
achieve this via the truth table. Let us write down the truth table for (x _ y)!z
(Table 3.4).

From the truth table, we know that there are three cases where the expression
(x _ y)!z is false: (1) x¼ 0, y¼ 1, z¼ 0; (2) x¼ 1, y¼ z¼ 0; (3) x¼ y¼ 1, z¼ 0.
For the remaining five cases, the expression is true. For each case when the
expression is true, we can use a product clause to represent it. For example, clause
x ^ y ^ z represents the case x ¼ y ¼ z ¼ 0, since x ^ y ^ z ¼ 1 if and only if
x ¼ y ¼ z ¼ 0. We then use _ to connect those true clauses to represent the whole
expression:

x ^ y ^ zð Þ _ x ^ y ^ zð Þ _ x ^ y ^ zð Þ _ x ^ y ^ zð Þ _ x ^ y ^ zð Þ:

It is easy to check that the truth table for the above proposition is the same as the
truth table for (x _ y)!z. Thus, they are equivalent propositions. We call it the
disjunctive normal form. Actually, for any proposition, we can use the above
method to write down its disjunctive normal form.

Theorem: For any proposition F(x1, x2, . . ., xn) ≢ 0 with n variables, we can
uniquely represent it as the following disjunctive normal form:

F x1, x2, . . . , xnð Þ ¼ Q1 _ Q2 _⋯ _ Qm

where each product Qi ¼ l1 ^ l2 ^⋯ ^ ln, and l j ¼ x j or x j.

This theorem is obtained by looking at 1-valued rows in a truth table. If we look at
0-valued rows in the truth table, can we also write an expression for (x _ y)!z? The
answer is YES. For each 0-valued row, we can write the representations connected

Table 3.4 Truth table for
proposition (x _ y)!z

x y z (x _ y)!z

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

86 3 Logic Thinking

by OR. For example, the row “x ¼ 0, y ¼ 1, z ¼ 0” can be represented by
x _ y _ zð Þ. It means x _ y _ zð Þ ¼ 0 if and only if x ¼ 0, y ¼ 1, z ¼ 0. Finally,
we use AND to connect the representations for the three 0-valued rows.

x _ yð Þ ! z ¼ x _ y _ zð Þ ^ x _ y _ zð Þ ^ x _ y _ zð Þ:

This is another way to write an equivalent proposition for any proposition, and we
call it the conjunctive normal form.

Theorem: For any proposition F(x1, x2, . . ., xn) ≢ 1 with n variables, we can
uniquely represent it as the following conjunctive normal form:

F x1, x2, . . . , xnð Þ ¼ Q1 ^ Q2 ^⋯ ^ Qm

where each sum Qi ¼ l1 _ l2 _⋯ _ ln, and l j ¼ x j or x j.

3.1.1.6 The Number of Boolean functions

Given a natural number n > 0, how many different Boolean functions are there with
n input variables?

Note that a Boolean function may be represented as two or more equivalent
Boolean expressions. Two Boolean expressions are equivalent if they have the same
truth table. This is the same as saying that two Boolean expressions are equivalent if
they have the same disjunctive normal form or if they have the same conjunctive
normal form. Two Boolean functions are different, if they do not have equivalent
Boolean expressions. Thus, all equivalent Boolean expressions are counted as one,
when computing the number of different Boolean functions.

The original question can be reduced to the question: how many different truth
tables there are for n input variables and one output variable. Let us look at a truth
table of n input variables in general.

x1 x2 . . . xn-1 xn y

0 0 . . . 0 0 0 or 1

0 0 . . . 0 1 0 or 1

0 0 . . . 1 0 0 or 1

0 0 . . . 1 1 0 or 1

. 0 or 1

1 1 . . . 1 0 0 or 1

1 1 . . . 1 1 0 or 1

Any truth table has 2n rows. Consequently, the y column has 2n cells, and each
can have a 0 or 1 value. Each different configuration of 0/1 values in the 2n cells
represents a different truth table. There are 22

n
configurations. Thus, there are 22

n

truth tables. So, there are 22
n
distinct Boolean functions.

3.1 Boolean Logic 87

The above result implies that any given Boolean function can be implemented by
a Boolean expression. From the normal form theorems, any Boolean function can be
implemented by AND, OR, NOT operations. This gives an affirmative answer to the
Adder Implementation Problem, since Adder is a Boolean function.

Example 3.4. The Numbers of Boolean Functions of One and Two Variables
For any given integer n > 0, there are 22

n
distinct Boolean functions. Let us

understand this result more concretely by explicitly enumerating all Boolean expres-
sions for n¼1 and n¼2. In this example, we only apply negation, conjunction and
disjunction operations in each round.

First consider the case when n ¼ 1. The number of Boolean functions is 22
1¼4.

We can use the recursive definition of Boolean expressions to find all Boolean
functions of one input variable x. The four functions are shown below with their
truth tables. They are: y is always false, y is always true, y ¼ x, and y ¼ NOT x.

x y

y y y x= 0 = 1 = y x=

0 0
1 0

x y
0 1
1 1

x y
0 0
1 1

x y
0 1
1 0

Now consider the case when n ¼ 2. The number of Boolean functions is 22
2¼16.

Again, we use the recursive definition of Boolean expressions to find all Boolean
functions of two input variables x1 and x2.

Round 1. y ¼ 0, y ¼ 1, y ¼ x1, y ¼ x2, y ¼ x1, y ¼ x2. Note that we simplify the
process by putting negations of Boolean variables in the initial step. At the end of
round 1, we have the Boolean expression set L ¼ 0, 1, x1, x2, x1, x2f g . The
corresponding truth tables are shown below.

88 3 Logic Thinking

Round 2. Apply AND, OR, NOT to L, and use the axioms of Boolean expres-
sions to eliminate redundant expressions. We add to L eight new expressions:

�x1 _ �x2, �x1 _ x2, x1 _ �x2, x1 _ x2, �x1 ^ �x2, �x1 ^ x2, x1 ^ �x2, x1 ^ x2
We have the new Boolean expression set

L ¼ 0, 1, x1, x2, �x1, �x2; �x1 _ �x2, �x1 _ x2, x1 _ �x2, x1 _ x2, �x1 ^ �x2, �x1 ^ x2, x1 ^ �x2, x1 ^ x2f g:

The corresponding truth tables for the eight new expressions are shown below.

Round 3. Apply AND, OR, NOT to L, and use the axioms of Boolean expres-
sions to eliminate redundant expressions. We add to L two new expressions:

�x1 ^ �x2ð Þ _ x1 ^ x2ð Þ, �x1 ^ x2ð Þ _ x1 ^ �x2ð Þ

We have the new Boolean expression set

3.1 Boolean Logic 89

L¼ 0,1,x1,x2, �x1, �x2; �x1 _ �x2, �x1 _ x2,x1 _ �x2,x1 _ x2, �x1 ^ �x2, �x1 ^ x2,x1 ^ �x2,x1 ^ x2f ;

�x1 ^ �x2ð Þ _ x1 ^ x2ð Þ, �x1 ^ x2ð Þ_ x1 ^ �x2ð Þg:

The corresponding truth tables for the two new expressions are shown below.

x1 x2 y
0 0 1
0 1 0
1 0 0
1 1 1

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0

Round 4. Apply AND, OR, NOT to L. We get no more new expressions. Stop.
The final set of all 16 Boolean expressions are in the L obtained in Round 3.

☶

Example 3.5. The Adder Implementation Problem, Revisited
Students are asked to implement an adder, which takes two n-bit numbers X and Y as
inputs and produces an n-bit number Z as the output. The adder is an n-input-n-
output Boolean function. Since any n-input-1-output Boolean function can be
implemented by an n-variable Boolean expression, we can theoretically use n such
Boolean expressions to implement an n-input-n-output Boolean function. In prac-
tice, we can often have better implementations.

Let us start at n¼1. A full adder has three input variables x1, y1, c0 and two
output variables z1, c1. Sometimes we simplify the variables as x, y, cin, z, cout, where
cin¼ c0 is the carry-in, and cout¼ c1 is the carry-out. The function of a full adder can
be understood as x1 + y1 + cin ¼ (coutz)2 where x1, y1, cin are three 1-bit binary
numbers and (coutz)2 is a 2-bit binary number. We can use 2 Boolean expressions to
compute z, cout. See the following equations and truth table:

z ¼ x
M

y
M

cin; cout ¼ x ^ yð Þ _ x
M

y
� �

^ cin
� �

cin x y z cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

90 3 Logic Thinking

Students are asked to verify that these equations correctly implement the addition
of 1-bit binary numbers (unsigned integers).

With the full adder concept in place, it is straightforward to implement an n-bit
adder, by cascading n full adders, where the carry-out of the current bit serves as the
carry-in of the next bit. The equations relating the input variables to output variables
follow:

z1 ¼ x1
L

y1
L

c0; c1 ¼ ðx1 ^ y1Þ _ ððx1
L

y1Þ ^ c0Þ
z2 ¼ x2

L
y2

L
c1; c2 ¼ ðx2 ^ y2Þ _ ððx2

L
y2Þ ^ c1Þ

z3 ¼ x3
L

y3
L

c2; c3 ¼ ðx3 ^ y3Þ _ ððx3
L

y3Þ ^ c2Þ
.

zn�1 ¼ xn�1
L

yn�1
L

cn�2; cn�1 ¼ ðxn�1 ^ yn�1Þ _ ððxn�1
L

yn�1Þ ^ cn�2Þ
zn ¼ xn

L
yn

L
cn�1; cn ¼ ðxn ^ ynÞ _ ððxn

L
ynÞ ^ cn�1Þ

The above equations realize the addition of n-bit binary numbers X and Y:
(xn. . .x1)2 + (yn. . .y1)2 + c0 ¼ (cnzn. . .z1)2.

☶

3.1.1.7 (***) Kleene Logic

In Table 3.2, we show that when logic connectives AND and OR are used as
multiplication and addition operators, respectively, we have a Boolean algebra, the
Boolean logic of which is different from the familiar logic of school algebra.

We also have shown that given any Boolean function, there exists a Boolean
expression that implements the Boolean function. In other words, any Boolean
function can be implemented by AND, OR, NOT operators over Boolean constants
and Boolean variables. This beautiful property should not be taken for granted. A
slight change could nullify this property. Let us look at an example.

The set of all Kleene expressions L is recursively defined as follows.

1. Initially, let 0, 1, x1, . . ., xn 2 L, where 0 and 1 are Kleene constants, and x1, . . ., xn
are Kleene variables.

2. Recursively apply NOT, AND, OR to L: If x, y 2 L, thenØx, x•y, x+y 2 L. Use the
basic properties in Table 3.5 (called Kleene algebra axioms) to reduce all
equivalent expressions into one expression, that is, to eliminate redundancy.

3. Repeat Step 2 until L no longer changes.

Note that the Complementation law x + Øx ¼ 1 does not hold anymore. It is
replaced by three weaker laws: the de Morgan law, the double negation law, and the
product law. This seemingly slight change to Boolean logic makes the following

3.1 Boolean Logic 91

statement to be false: any Kleene function can be implemented by AND, OR, NOT
operators over Kleene constants and Kleene variables.

In Boolean algebra, p•xi+p•Øxi ¼ p•(xi+Øxi)¼ p. But in Kleene algebra, this no
longer holds. We have p•xi+p•Øxi ¼ p+p•xi+p•Øxi, where p is a product of Kleene
variables and their negations. For instance, given the product p ¼ Øx1•x2, from the
product law we have (Øx1•x2)•x3+(Øx1•x2)•Øx3 ¼ Øx1•x2 + Øx1•x2•x3 + Øx1•x2•Øx3,
not (Øx1•x2)•x3+(Øx1•x2)•Øx3 ¼ Øx1•x2.

We know that there are 22
n
distinct Boolean expressions of n variables, with the

assumption that equivalent expressions are counted as one expression.
How many distinct Kleene expressions of n variables are there, for a given n>0?

This is still an open problem. We compare the numbers of distinct Boolean and
Kleene expressions of n variables in Table 3.6. Note that we still do not know the
formula for the number of distinct Kleene expressions, but do know that this number
is less than 23

n
.

To have a more concrete understanding, let us enumerate all Kleene expressions
of one variable x. Initially, the set L of Kleene expressions is L ¼ {0, 1, x}.

Round 1. We obtain a new expression �x:The new L ¼ 0, 1, x; �xf g.
Round 2. For Boolean expressions, we would stop here, as L no longer changes.

Table 3.5 Contrasting the axioms of Boolean algebra and Kleene algebra

Law Boolean algebra Kleene algebra

Associativity (x • y) • z = x • (y • z), (x • y) • z = x • (y • z),

(x + y) + z = x + (y + z) (x + y) + z = x + (y + z)

Commutativity x • y = y • x x • y = y • x

x + y = y + x x + y = y + x

Distributivity (x + y) • z = (x • z) + (y • z) (x + y) • z = (x • z) + (y • z)

(x • y) + z = (x + z) • (y + z) (x • y) + z = (x + z) • (y + z)

Identity x + 0 = x, x • 1 = x x + 0 = x, x • 1 = x

Annihilator x • 0 = 0, x + 1 = 1 x • 0 = 0, x + 1 = 1

Idempotence x • x = x, x + x = x x • x = x, x + x = x

Absorption (x•y)+x = x, (x+y)•x = x (x•y)+x = x, (x+y)•x = x

Complementation N/A

de Morgan

Double Negation

Product

Table 3.6 The numbers of distinct Boolean and Kleene expressions of n variables

n # of Distinct Boolean expressions # of Distinct Kleene expressions

1 22
1 ¼ 4 6

2 22
2 ¼ 16 84

3 22
3 ¼ 256 43918

4 22
4 ¼ 65536 160297985276

In general 22
n

Unknown but < 23
n

92 3 Logic Thinking

Round 2. For Kleene expressions, we continue and obtain two new expressions
x ∙�x, xþ �x, the new L ¼ 0, 1, x; �x; x ∙�x, xþ �xf g.

Round 3. Stop, since L no longer changes.
Note that the number of Boolean expressions of one variable x is 22

1¼4. These
four expressions are: always false, always true, identical to x, and NOT x. For Kleene
logic, the number of Kleene expressions is 6. The two new expressions are: x AND
(NOT x), and x OR (NOT x), which are absent from Boolean logic.

We also have the notion of Kleene functions, similar to Boolean functions. An n-
input-1-output Kleene function is a mathematical function

f:{0, I, 1}n! {0, I, 1}, and the mapping is defined by the truth table of f. Different
from binary Boolean logic, Kleene logic is ternary, in that we have three values.
Besides 0 (False) and 1 (True), we have a new middle value I for Indeterminate.
Table 3.7 shows the truth values of the AND, OR, NOT operators on two variables
x and y.

Note that there are 33
n
n-input-1-output distinct Kleene functions and truth tables.

For n¼1, there are 33
1 ¼ 27 distinct functions but only six distinct Kleene expres-

sions. Many Kleene functions cannot be represented by Kleene expressions. Thus, in
Kleene logic, some Kleene functions cannot be implemented by AND, OR, NOT.

3.1.1.8 Using Propositional Logic to Solve Problems

We discuss four examples to show how logic helps produce correct computational
processes.

Example 3.6. The Congruent Triangles Problem, Revisited
Given any conditional statement “if P then Q”, we denote it in propositional logic as
P!Q. The negation of this statement is NOT(if P then Q), or Ø(P!Q). The two
statements are related. Only one is true.

Using the triangles example, let us call “P!Q” the original statement, where P
stands for “two triangles are congruent” and Q stands for “two triangles are similar”.
Four types of statements are derived from the original statement, as shown in
Table 3.8. These four types of statements are logically related.

Table 3.7 Truth table show-
ing the truth values of AND,
OR, NOT operators in Kleene
logic

x y x ^y x _ y Øx
0 0 0 0 1
0 I 0 I 1
0 1 0 1 1
I 0 0 I I
I I I I I
I 1 I 1 I
1 0 0 1 0
1 I I 1 0
1 1 1 1 0

3.1 Boolean Logic 93

These logic relationships can be used to arrive at new statements and their truth
values, sometimes without needing domain knowledge of geometry.

The original statement, “if two triangles are congruent, then they are similar”, is a
true statement. We know this from geometry. Congruent triangles have the same
shape and size. Similar triangles have the same shape. Two triangles, having the
same shape and size, of course have the same shape. Thus, they are similar. That is,
P!Q is a true proposition.

The converse of the original statement is “if two triangles are similar, then they
are congruent”. The converse of the conditional statement P!Q is the statement
obtained by exchanging the position of P and Q, namely, Q!P. From geometry
knowledge, we know this statement is false. Two similar triangles can have the same
shape but different sizes, thus are not congruent. That is, Q!P is a false proposition.

The inverse of the original statement is “if two triangles are not congruent, then
they are not similar”. The inverse of the conditional statement P!Q is the statement
obtained by negating both P and Q, namely, (ØP)!(ØQ).

Now, what is the truth value of the inverse statement? Is it true or false? We can
obtain the answer without knowing geometry. In fact, we know immediately that the
inverse statement (ØP)!(ØQ) in this example is a false proposition, because (1) the
converse statement is false, and (2) the converse and the inverse statements are
logically equivalent. The second point can be proven easily by showing that (ØP)!
(ØQ) ¼ Q!P.

(ØP)!(ØQ) The given inverse statement
¼ Ø(ØP) _ (ØQ) by implication property P!Q ¼ ØP _ Q
¼ P _ (ØQ) eliminate double negation
¼ ØQ _ P use communicative law
¼ Q!P obtain the converse by implication property.

The contrapositive of the original statement is “if two triangles are not similar,
then they are not congruent”. The contrapositive of the conditional statement P!Q
is the statement obtained by negating both P and Q, and then exchanging positions,
namely, (ØQ)!(ØP). We can show that the contrapositive statement and the
original statement are logically equivalent. That is, (ØQ)!(ØP) is equivalent to
P!Q. The proof is the same as showing (ØP)!(ØQ) ¼ P!Q.

Finally, the negation of the original statement is “NOT (If two triangles are
congruent, then they are similar)”. The negation of the conditional statement P!Q is
just the logic negation, namely, Ø(P!Q). It can be transformed into other equivalent

Table 3.8 The Converse, Inverse, Contrapositive, and Negation of a conditional statement

Statement type Logic form Triangles example

Original P!Q If two triangles are congruent, then they are similar

Converse Q!P If two triangles are similar, then they are congruent

Inverse (ØP)!(ØQ) If two triangles are not congruent, then they are not similar

Contrapositive (ØQ)!(ØP) If two triangles are not similar, then they are not congruent

Negation Ø(P!Q) NOT (If two triangles are congruent, then they are similar)

94 3 Logic Thinking

forms: Ø(P!Q)¼Ø(ØP _Q)¼ (ØØP) ^ (ØQ)¼ P ^ (ØQ). That is, “Two triangles
are congruent AND they are not similar”, which is a false statement.

Note that the negation is not the same as the inverse. The original statement AND
its negation always form a contradiction: (P!Q) ^Ø(P!Q)¼ FALSE. The original
statement AND its inverse yield “P is identical to Q”: (P!Q) ^ (ØP!ØQ) ¼ P�Q.

☶

Example 3.7. The Impatient Guide Problem, Revisited
A tourist is traveling in the land of Oz and wants to go to the Emerald City. The
tourist reaches a crossroad with paths P and Q, one of which leads to the Emerald
City. There is a guide G at the crossroad, who comes from either the Honest Village
or the Lying Village. Anyone from the Honest Village always tells the truth, and
anyone from the Lying Village always tells lies. The guide is impatient, in that G
only answers one question from the tourist, and the answer is either “Yes” or “No”.

What question should the tourist ask the guide, to determine the correct path?

The main difficulty is as follows. On one hand, the tourist needs to collect
information which apparently needs at least two answers to Yes-No questions. On
the other hand, the impatient guide only answers one question. Fortunately, propo-
sitional logic tells us that we can use proper connectives to combine two propositions
into a single proposition. One of the propositions should contain information about
the Honest or Lying Village, the other should be about the path to the Emerald City.
With this line of thought, we come up with the following question:

Are your answers the same, to the two questions “are you from the Honest Village” and
“does path P lead to the Emerald City”?

If the answer is “Yes”, take path P; if the answer is “No”, take path Q.
To make the above reasoning clearer, let us use propositional notations to denote

the solution.

• H denotes the proposition “G is from the Honest Village”. That is, H¼1 means G
is from the Honest Village; H¼0 means G is from the Lying Village.

• S denotes the proposition “Path P leads to the Emerald City”. That is, S¼1 means
path P leads to the Emerald City; S¼0 means path Q leads to the Emerald City.

With these notations, the single question to ask is Ø(H
L

S)¼?. However, the
answer we get is not the true value ofØ(H

L
S) since it depends on whether the guide

G comes from Honest Village or not. If G is from the Honest Village, we will get the
true value of Ø(H

L
S); while if G is from the Lying Village, we will get the true

value of H
L

S. If we use the propositional notations to represent the above argu-
ment, the answer we will hear is actually (ØH)

L
Ø(H

L
S). By applying the

properties in Table 3.2 and 3.3 or calculating the truth table of this Boolean
expression, it is easy to find that (ØH)

L
Ø(H

L
S) ¼ S. Thus, we should choose

path P if the answer we get is “Yes” and choose path Q if the answer we get is “No”.
To make the argument clearer, we verify the correctness of the question and its

answer by using a truth table.

3.1 Boolean Logic 95

H S Ø(H
L

S) Comments

0 0 1 G is lying and the true value of the question is “Yes”

The answer is “No”, take path Q

0 1 0 G is lying and the true value of the question is “No”

The answer is “Yes”, take path P

1 0 0 G is telling the truth and the true value of the question is “No”

The answer is “No”, take path Q

1 1 1 G is telling the truth and the true value of the question is “Yes”

The answer is “Yes”, take path P

☶

Example 3.8. The Parity Program to Show Logic and Bit-Shift Operations
The parity of a number refers to whether the number’s bits have an even number of
1’s (parity is 0) or an odd number of 1’s (parity is 1). The program parity.go below
computes the parity values of 63 and 127. The parity function computes parityValue
¼ X0

L
X1

L
X2

L
. . .

L
X63 for any 64-bit integer X ¼ (X63X62. . .X0)2, where

L
is the XOR operator. So, 63 ¼ 0. . .00111111 has six 1’s (even, parity is 0), and
127 ¼ 0. . .01111111 has seven 1’s (odd, parity is 1).

The statement

parityValue ^= X & 1

is a shorthand for

parityValue = parityValue ^ (X & 1)

where & is the bitwise AND operator and ^ is the bitwise XOR operator. More
specifically, let X ¼ (X63X62. . .X0)2 and Y ¼ (Y63X62. . .Y0)2, we have
X & Y ¼ (X63 ^ Y63,X62 ^ Y62, . . .X0 ^ Y0)2 and X ^ Y ¼ (X63

L
Y63,

X62
L

Y62, . . .X0
L

Y0)2.The expression (X & 1) clears all bits of X but keeps the
rightmost bit intact, that is, X & 1 ¼ (00. . .00X0)2. The expression parityValue ^
(X & 1) computes (the current parityValue)

L
(last bit of X). Finally, the statement

X ¼ X >> 1 right shifts X one bit, for the next iteration. That is, X >> 1¼
(0X63X62. . .X2X1) (Fig. 3.1).

☶

Example 3.9. Program to Hide a Character in a Byte Array
In the Text Hider project, students are asked to hide a text file in an image file. This
example does a much simpler task of hiding an ASCII character ‘K’ in a byte array
A¼[11010001, 11001001, 11011010, 11011010] ¼ [D1, C9, DA, DA]. The pro-
gram replace.go in Fig. 3.2 does this by replacing the least significant two bits of the
four elements of array A, with the eight bits of character ‘K’. Every element A
[i] hides two bits of ‘K’, as the following table shows (Table 3.9).

96 3 Logic Thinking

The program uses tab \t to align the two lines of printing outputs, to better see the
changes made to the last two bits of the array elements. The main work is done in the
for loop, which iterates over the four elements A[0] to A[3], with the index values
changing from i¼0, 1, 2, to 3. We only need to look at the detailed case when i¼0.
The other cases are similar. When i¼0, we have data¼'K'¼01001011 and A[i]¼A
[0]¼ 11010001. The results of the loop body are shown below step-by-step.

v := data & 0x3 v= 01001011 & 00000011 = 00000011
// retain rightmost 2 bits of 'K'

A[i] = A[i] & 0xFC A[i]= 11010001 & 11111100 = 11010000
// clear rightmost 2 bits of A[i]

A[i] = A[i] | v A[i]= 11010000 | 00000011 = 11010011
// set last 2 bits of A[i] with those of 'K'

data = data >> 2 data= 00010010
// shift 'K' 2 bits to the right

☶

(a) Source code of program parity.go

> go run parity.go
0
1
>

package main
import "fmt"
func parity(X int) int {

parityValue := 0
for i := 0; i<64; i++ { // X is a 64-bit integer

parityValue ^= X & 1 // parityValue = parityValue ^ (X & 1)
X = X >> 1 // shift X right one bit

}
return parityValue

}
func main() {

a := 63 // 63 = 00111111 has six 1's
fmt.Println(parity(a))
a = 127 // 127 = 01111111 has seven 1's
fmt.Println(parity(a))

}

(b) Running parity.go to produce the output

Fig. 3.1 Using parity.go to illustrate logic and shift operations

3.1 Boolean Logic 97

3.1.2 Predicative Logic

Predicative logic is also called first-order logic. It contains propositional logic as well
as predicates and quantifiers. Predicative logic has more expressive power than
propositional logic. That is, predicative logic can be used to rigorously express
some logic statements which ppositional logic cannot do.

3.1.2.1 Predicate and Quantifier

A predicate can be viewed as a proposition with one or more input variables. A
predicate takes an entity or entities as input variables to produce an output of either
True or False value. For instance, consider the two sentences “Socrates is a philos-
opher” and “Plato is a philosopher”. In propositional logic, these sentences are
viewed as being unrelated and may be denoted, for example, by propositional

> go run replace.go
Before: A = [11010001 11001001 11011010 11011010]
After: A = [11010011 11001010 11011000 11011001]
>

package main
import "fmt"
func main() {

A := [4]byte{0xD1,0xC9,0xDA,0xDA}
fmt.Printf("Before: \tA = [%b %b %b %b]\n",A[0],A[1],A[2],A[3])
data := byte('K')
for i := 0; i < len(A); i++ {

v := data & 0x3 // retain last 2 bits of 'K'
A[i] = A[i] & 0xFC // clear last 2 bits of A[i]
A[i] = A[i] | v // set last 2 bits of A[i] with those of 'K'
data = data >> 2 // repeat with the next 2 bits of 'K'

}
fmt.Printf("After: \t\tA = [%b %b %b %b]\n",A[0],A[1],A[2],A[3])

}

(b) Running replace.go to produce the output

(a) Source code of program replace.go.

Fig. 3.2 Using replace.go to illustrate logic and shift operations

Table 3.9 Values of ele-
ments of array A before and
after replacing the least sig-
nificant two bits with charac-
ter ‘K’ ¼ 75 ¼ 01001011

Array element Before After

A[0] 11010001 11010011
A[1] 11001001 11001010
A[2] 11011010 11011000
A[3] 11011010 11011001

98 3 Logic Thinking

https://en.wikipedia.org/wiki/Propositional_calculus

variables p and q. However, in predicative logic, we can use predicate Phil(x) to
represent “x. is a philosopher”, where x is an input variable. Thus, if “a” represents
“Socrates”, then Phil(a) means “Socrates is a philosopher”. Phil(x) is a predicate
with one input variable x. Phil(a) is a predicate with the input variable x instantiated
with the entity constant a.

There are two quantifiers in predicative logic. The universal quantifier 8 means
“for all”, “for any”, “for every”. The existential quantifier ∃ means “there exists”.
For instance, we can have the following statements and their expressions.

All philosophers are mortals. 8x [Phil(x)!Mortal(x)].
Socrates is a philosopher. Phil(a).
Socrates is a mortal. Mortal(a).
There exists a philosopher. ∃x [Phil(x)].

In predicative logic, we need to pay attention to the quantifies about their domain,
order and use with negation, as illustrated by the following example.

Example 3.10. Domain, Order, and Negation When Using Quantifiers
Consider the mathematical statement: for any natural number n, either n is an even
number, or n+1 is an even number. This statement expressed in natural language can
be more concisely and precisely expressed in predicative logic as

8n Even nð Þ _ Even nþ 1ð Þ½ �,

where we use predicate Even(n) to mean n is an even number.
However, the above predicative logic expression does not consider “for any

natural number”. This can be compensated by explicitly indicating the domain of
variable n associated with the universal quantifier, and the expression becomes:

8n 2 ℕ Even nð Þ _ Even nþ 1ð Þ½ �,

where ℕ represents the set of natural numbers.
In predicative logic, the order of the quantifiers is important. Look at the

following two statements. The first is true while the second is false.

ð1Þ 8x 2 ,∃y 2  ðy ¼ xþ 1Þ Every natural number has a successor:

ð2Þ ∃y 2 , 8x 2  ðy ¼ xþ 1Þ There is a natural number which is the

successor of all natural numbers:

With negation, we need to differentiate “Not-All” and “All-Not” statements.
More precisely, consider the following two statements.

Ø 8x 2 ℕ Even nð Þ½ �ð Þ Not all natural numbers are even:

3.1 Boolean Logic 99

8x 2 ℕ ØEven nð Þ½ �Þ All natural numbers are not even:

The first statement (Not-All) happens to be true, and the second statement
(All-Not) happens to be false.

Negation with quantifiers satisfies the following negation properties:

Ø ∃x P xð Þð Þ ¼ 8xØP xð Þ, Ø 8x P xð Þð Þ ¼ ∃xØP xð Þ:

For instance, the true statement

Ø 8x 2 ℕ Even nð Þ½ �ð Þ Not all natural numbers are even

is equivalent to

∃x 2 ℕ ØEven nð Þ½ � There exists a natural number that is not even:

The false statement

8x 2  ½ØEvenðnÞ� All natural numbers are not even

is equivalent to

Øð∃x 2  ½EvenðnÞ�Þ There exists no natural number that is even:

The negation properties can be used in cascade. For instance, the statement

Ø ∃y 2 ℕ,8x 2 ℕ y 6¼ xþ 1ð Þð Þ There is no natural number which is

not the successor of any natural number

is equivalent to

8y 2 ℕ,∃x
2 ℕ y ¼ xþ 1ð Þ Any natural number is the successor of some natural number:

This statement is false, as zero is not the successor of any natural number.
☶

3.1.2.2 More Examples of Writing Predicative Logic Expressions

We discuss more examples to show how to write predicate logic expressions. In
particular, we show how natural language statements can be expressed as predicate
logic expressions. The latter can express the statements more rigorously.

100 3 Logic Thinking

Example 3.11. Representing Infinity
Consider the following statement expressed in natural language:

There exist infinitely many prime numbers.

How to represent this statement as a predicate logic expression?
We use the predicate Prime(m) to represent “m is a prime number”. Now the key

is how to express “infinite”. There are several ways to do it.
The first way is to express “infinite” directly by interpreting it. We convert the

original statement “there exist infinitely many prime numbers” into a more concrete
statement: “for any natural number, these exists some prime number larger than it”.
Since there are infinitely many natural numbers, there are infinitely many prime
numbers.

Then, “there exist infinitely many prime numbers” can be expressed by the
following expression:

8n 2 ℕ,∃m 2 ℕ, m > nð Þ ^ Prime mð Þð Þ½ �

which is a direct rewriting of the more concrete statement.
The second way is to is to express “infinite” as “not finite”. We first write a

statement for “finite”, and then negate it. The following two expressions are exam-
ples of this method. We use the idea: for any finite subset of ℕ , there exists a
maximum number in this subset.

Ø ∃n 2 ℕ,8m 2 ℕ, m > nð Þ ! Ø Prime mð Þð Þ½ �ð Þ
Ø ∃n 2 ℕ, 8m 2 ℕ, Prime mð Þð Þ ! m � nð Þ½ �ð Þ

We leave it as an exercise to show that the above two expressions indeed express
the statement “there exist infinitely many prime numbers”.

☶

Example 3.12. Predicate Refinement
We use the predicate Prime(m) to represent “m is a prime number” in the above
example, to obtain the following expression for “there exist infinitely many prime
numbers”:

8n 2 ℕ,∃m 2 ℕ, m > nð Þ ^ Prime mð Þð Þ½ �

Let us try to express “prime number”, by refining the predicate Prime(m). From
mathematics, prime numbers are positive integers which have only two factors:
1 and themselves. This definition of prime number is a little bit difficult to express,
because it contains the phrase “have only”. We can use an equivalent but easier-to-
express definition: a prime number is a natural number that cannot be generated by
multiplying other two natural numbers greater than 1. Thus, we have

3.1 Boolean Logic 101

Prime mð Þ ¼ 8p, q 2 ℕ, p, q > 1 m 6¼ pqð Þ:

Here, p, q 2 ℕ , p, q > 1 is the domain of variable p, q. Intuitively, the above
equation says thatm is a prime number ifm is not the product of two natural numbers
p and q which are both greater than 1.

We can directly substitute Prime(m) in the original expression:

8n 2 ℕ,∃m 2 ℕ, m > nð Þ ^ 8p, q 2 ℕ, p, q > 1 m 6¼ pqð Þð Þ½ �:

But usually, we write all quantifiers in front of the expression. Thus, we have:

8n 2 ℕ,∃m 2 ℕ,8p, q 2 ℕ, p, q > 1 m > nð Þ ^ m 6¼ pqð Þ½ �:

Here, we emphasize again the importance of the order of the quantifiers. Consider
the following two expressions

8n 2 ℕ, 8p, q 2 ℕ, p, q > 1,∃m 2 ℕ m > nð Þ ^ m 6¼ pqð Þ½ �

and

∃m 2 ℕ, 8n 2 ℕ,8p, q 2 ℕ, p, q > 1 m > nð Þ ^ m 6¼ pqð Þ½ �:

Neither expression is equivalent to the statement “there exist infinitely many
prime numbers”.

Now consider another related logic statement called the twin prime conjecture:

There are an infinite number of twin prime pairs.

How can we represent this statement as a predicate logic expression? The key
here is what is “twin prime pair”. Twin primes (or a twin prime pair) are two prime
numbers with a difference of 2. For instance, 5 and 7 form a twin prime pair, so do
11 and 13. Adding this definition to the original expression for infinite prime
numbers, we have a predicate logic expression for the twin prime conjecture as
follows:

8n 2 ℕ,∃m 2 ℕ, 8p, q 2 ℕ, p, q > 1 m > nð Þ ^ m 6¼ pqð Þ ^ mþ 2 6¼ pqð Þ½ �:

☶

Example 3.13. Representing Potentially Unbounded Process
Let us consider the following statement called the Collatz conjecture, which is a
logic statement involving a potentially unbounded process.

For any positive integer n, multiply n by 3 and add 1 if n is odd, and divide n by 2 if n is even.
Repeat this process and you will always get 1.

102 3 Logic Thinking

For example, for n ¼ 15, the above process become 15 ! 46 ! 23 ! 70 !
35! 106! 53!170! 85! 256! 128! 64!32! 16! 8! 4! 2!
1. After 17 steps, the process converges to 1.

We use f(n) to represent one step for integer n, and use f (m)(n) to represent the
m times composition of function f, that is, f (f (⋯f (n)⋯)). The Collatz conjecture
can be expressed by the following predicate logic expression:

8n,∃m, f mð Þ nð Þ ¼ 1
h i

, where f nð Þ ¼ 3nþ 1, if n � 1 mod 2ð Þ;
n=2, if n � 0 mod 2ð Þ:

�

At present, this conjecture has not yet been solved.
☶

3.1.2.3 Inference Rules and Axiomatic Systems in Boolean Logic

We have implicitly used axioms and inference rules from school logic in under-
standing the material of Boolean logic. On the other hand, we also point out that
Boolean algebra is different from school algebra. This seemingly contradiction raises
a question: is logic thinking different in computer science from that in ordinary
mathematics? How to rigorously specify the difference?

Normally, logic thinking in computer science is the same as that in ordinary
mathematics. More specifically, we can use a mathematic method called axiomatic
systems to specify any particular logic system. An axiomatic system is built from
three components: (1) a set of elements and operators on these elements, (2) a set of
axioms, i.e., given properties about the elements and operators; and (3) a set of
inference rules to derive new properties from known properties.

To rigorously specify a logic system in computer science, such as Boolean logic,
that is different from ordinary school mathematics, we explicitly specify different
operators and axioms but normally use the same inference rules of mathematics.
For instance, comparing to algebra in high school mathematics, Boolean logic
introduces a new NOT operator. In addition, as shown in Table 3.2, Boolean logic
introduces three new axioms (the idempotence, the absorption, and the complemen-
tation laws) and changes the distributivity and the annihilator laws.

We explicitly list three sets of commonly used inference rules in Box 3.2. They
are all inference rules of ordinary mathematics, and can be used to infer a statement
(conclusion), given one or more statements (premises).

3.1 Boolean Logic 103

Box 3.2. Several Commonly Used Inference Rules
Modus Ponens:

Given X!Y Every Web page has a URL
X My homepage is a Web page

Conclude Y My homepage has a URL

Modus Tollens:
Given X!Y Every Web page has a URL

ØY My cellphone does not have a URL
Conclude ØX My cellphone is not a Web page

Negating Quantified Predicate:
Given Ø(∃x P(x)) Given 8 x Ø P(x)
Conclude 8x Ø P(x) Conclude Ø (∃x P(x))

Given Ø(8x P(x)) Given ∃ x Ø P(x)
Conclude ∃x Ø P(x) Conclude Ø (8x P(x))

3.2 Automata and Turing Machines

When a computational process has a single step, Boolean logic often suffices to
produce correct answer and ensures logic correctness. However, when a computa-
tional process involves multiple steps, we often prefer new models. A key concept is
automata, also known as state machines. An automaton can remember things by
holding states and use state transitions to represent steps.

David Hilbert (1862–1943) put forward a very fundamental and general problem
that requires multi-step computational processes, the Entscheidungsproblem (the
decision problem), i.e., mechanically proving theorems of mathematics. Alan Turing
gave a negative answer to the decision problem, but in the process, proposed Turing
machines, a class of automata that turn out to be able to solve any computable
problems. Turing machines are key milestones and cornerstones of correctness and
generality of computational processes.

Fundamental limitations of computation are also discussed. There exist incom-
putable problems that cannot be solved by any Turing machine. We also have
Gödel’s incompleteness theorem: being true and being provable are not the same
thing. In any reasonably sophisticated mathematic system, there are mathematic
theorems which cannot be proven.

3.2.1 Mechanical Theorem Proving

Mechanical theorem proving (also known as automated theorem proving or
computer-assisted proof), requires that in the process of calculation or proof, after
each step, there is a certain rule to choose the next step. Along this path, the process

104 3 Logic Thinking

will finally reach the required conclusion. In this way, people hope to avoid those
highly skilled mathematical calculations or proofs and replace them with the pow-
erful computing power of modern computers.

The idea of mechanical proof can be traced back to the seventeenth century
French mathematician Rene Descartes (1596–1650). Descartes once had a
great idea: “All problems can be turned into mathematical problems; all mathemat-
ical problems can be turned into algebraic problems; and all algebraic problems can
be turned into solving algebraic equations.” Descartes created analytical geometry,
established the bridge between the spatial form and the quantitative relationship, and
established the framework to solve elementary geometric problems based on alge-
braic methods.

In 1928, David Hilbert stated the problem of mechanical theorem proving more
clearly: given an axiomatic system, is there a mechanical method (now called an
algorithm) that can verify the truth or falsity for every proposition in this system? In
Sect. 3.2.3 we will see that the answer to this Entscheidungsproblem is No.

However, although it is impossible to use an algorithm to determine all the
propositions, it is still feasible to use mechanized methods for specific problems in
specific fields. For example, the elimination method (Wu’s method) based on the
zero-point set of the polynomial system proposed by Professor Wenjun Wu (also
known as Wu Wen-tsün,) can be applied to the mechanical proof of a large number
of geometric theorems.

The first major theorem proved with the help of computer is the four-color
theorem. This famous four-color theorem in graph theory asserts that any planar
graph can be 4-colored, that is, there is a way to dye each vertex with one of four
colors so that any adjacent vertices do not have the same color. The four-color
theorem was first proposed by Francis Guthrie (1831–1899) in 1852. This problem
puzzled mathematicians for more than a 100 years. It was finally proved by Kenneth
Appel and Wolfgang Haken in 1976 with the help of computer.

The idea of their proof is as follows: if a certain structure appears in the planar
graph, this part can be replaced with a smaller structure (that is, reduce the size of the
original graph), while the 4-colored property is unchanged. That is, if the new graph
can be 4-colored, the original larger graph can also be 4-colored. For example, a
vertex with a degree no greater than 3 can be removed, because it does not affect
whether the whole graph can be colored by 4 colors. Appel and Haken proved that
there are 1936 planar graphs that cannot be reduced to one another. Any other planar
graph can always reach one of these 1936 graphs through the specific process of
reduction. Finally, with the help of the computer, after more than 1000 h of
calculation, they verified that all 1936 graphs can be 4-colored and thus proved the
four-color theorem.

3.2 Automata and Turing Machines 105

3.2.2 Automata

When a proof process is viewed as a computational process, it is usually a multistep
process. We start from the axioms or a known true statement (a theorem), and
repetitively apply the inference rules to arrive at new true statements and the final
conclusion. The result of an inference step should be memorized as a state, and used
as part of inputs for future steps. That is, we need a machine that holds states. Such a
machine is called an automaton. We will introduce two classes of automata, namely
finite state automata and Turing machines.

Consider a simple vending machine, which sells bottled water and bagged
biscuits. The price of bottled water is $1 per bottle and the price of biscuits is $2
per bag. The vending machine accepts only $1 or $2 banknotes. In any state, a buyer
can perform one of five actions to the vending machine: (1) insert a $1 banknote,
(2) insert a $2 banknote, (3) press the “Buy water” button, and (4) press the “Buy
biscuits” button, and (5) press the “Get money back” button.

Initially, the vending machine is in the state q0 (initial state). If the buyer inserts a
$1 banknote, the vending machine will transfer to a new state q1. If the buyer
chooses to buy bottled water in state q1, the vending machine will output one bottle
of water and go back to state q0. If the buyer inserts one more $1 banknote in state q1,
the vending machine will transfer to a new state q2. If the buyer chooses to buy
something in state q2, the vending machine will output the corresponding goods and
go back to q0 (biscuits) or q1 (bottled water). If the buyer wants to get the money
back in state q1 or q2, the vending machine will return the corresponding amount of
money and go back to state q0.

Figure 3.3 is called the state-transition diagram, which shows the above state
transition rules of the vending machine. Note that the arrow notation specifies an
input-output pair. “$1!$1” at the arrowed curve in state q2 denotes “when the buyer
inserts a $1 bill, the machine outputs a $1 bill and stays in state q2.” The notation
“$1!” at the arrowed curve from state q0 to state q1 denotes “when the buyer inserts
a $1 bill, the machine outputs nothing and transitions from state q0 to state q1.”

The state-transition diagram can be equivalently written as a state-transition
table in Table 3.10. Note that the state transition diagram happens to omit some
possible transitions, while the state transition table lists all possible transitions.

The above computational model for the vending machine is called a (determin-
istic) finite automaton, also known as a finite-state automaton. It is a model of
computation suitable for computational processes where only finite numbers of
states are involved. A computational process that involves potentially infinite num-
ber of states cannot be modeled by a finite-state automaton. Finite automata cannot
handle infinite states, as shown by the following example.

Example 3.14. Palindromes Cannot Be Recognized by Finite Automata
A palindrome is a character string that is the same when reading backwards. For
instance, 1991 is a palindrome, so is 010011000111000011110000111000110010.
We leave it as an exercise for students to show that palindromes cannot be recog-
nized by finite automata.

☶

106 3 Logic Thinking

3.2.3 Computation on Turing Machine

What is computable? Alan Turing gave a rigorous definition in his famous paper in
1936. His idea is that all the infinite mathematical entities, such as numbers, vari-
ables, functions and predicates, can be mapped to the infinite set of real numbers. A
mathematical entity is computable if its corresponding real number is computable.

Fig. 3.3 The state transition diagram for a vending machine

Table 3.10 State transition table of a vending machine

Current state Input Output Next state

q0 Insert $1 Null q1
Insert $2 Null q2
Buy water Null q0
Buy biscuits Null q0
Get money back Null q0

q1 Insert $1 Null q2
Insert $2 Output $2 q1
Buy water Output water q0
Buy biscuits Null q1
Get money back Output $1 q0

q2 Insert $1 Output $1 q2
Insert $2 Output $2 q2
Buy water Output water q1
Buy biscuits Output biscuits q0
Get money back Output $2 q0

3.2 Automata and Turing Machines 107

What is computable is reduced to what real numbers are computable. “The comput-
able numbers [are] the real numbers whose expressions as a decimal are calculable
by finite means.” Another equivalent definition is: “A number is computable if its
decimal can be written down by a machine.”

Example 3.15. The Circular Constant π Is Computable
We use π to denote the circular constant (the ratio of circumference to diameter of
any circle). It is an irrational number and has infinitely many decimal digits.
Nevertheless, π is computable according to Turing’s definition: π is a real number
whose decimal digits are calculable by finite machines. That is, any sequence of
digits of π that we want can be produced by finite means.

Suppose we want the first 800 digits of π. This sequence can be produced by the
following finite means: running the following pi.go program1 on a laptop computer.
The program is finite, as it contains 27 lines of code. The computer is finite with 2GB
memory capacity. The running time is finite, as executing the pi.go program
consumes less than 1s. The entire execution process is automatic.

package main
import "fmt"
func main() {

var r [2801]int
var i, k, b, d int
c := 0
for i = 0; i < 2800; i++ {

r[i] = 2000
}
for k = 2800; k > 0; k -= 14 {

d = 0
i = k
for ;; {

d += r[i] * 10000
b = 2 * i - 1
r[i] = d % b
d /= b
i--
if i == 0 {break}
d *= i

}
fmt.Printf("%.4d", c + d / 10000)
c = d % 10000

}
}

1This pi.go program is rewritten into Go code from a 160-character C program written by Dik
T. Winter of the Centrum Wiskunde & Informatica (CWI) in the Netherlands. Dr. Ben Lynn of
Stanford University analyzed the C code. Please see his analysis note at https://crypto.stanford.edu/
pbc/notes/pi/code.html.

108 3 Logic Thinking

https://crypto.stanford.edu/pbc/notes/pi/code.html
https://crypto.stanford.edu/pbc/notes/pi/code.html

The program pi.go produces the first 800 decimal digits of π:
314159265358979323846264338327950288419716939937510582097494

4592305218781640628620899862803482534211706798214808651328230
66470938446095564230582231725359408128481117450284102701938
52110555964462294895493038841519644288109756659334461284756482
337867831652712019091456485669234687580348610454326648213393607
260249141273724587006606315588174881520923797096282925409171536
436789259036001133053054882046652138414695194151706416094330572
703657595919530921861173819326117931051185480744623799624232749
567351885752724891227938183011949129833673362440656643086021390
373494639522473719070217986094370277053921717629317675238467481
846766091940513200056812714526356082778577134275778960917363717
872146844090612249534301465495853710507922796892589235420199561
121290219608640344181598136297747713099605187072113499999983729
780499510597317328160963185

☶

In his 1936 paper “On Computable Numbers, with an Application to the
Entscheidungsproblem”, Alan Turing described an abstract computer which was
later called a Turing machine. Turing machines are a more powerful model of
computation than finite automata.

The organization of a Turing machine is shown in Fig. 3.4. At a minimum, a
Turing machine is comprised of three components: (1) an infinite tape, (2) a read/
write head, and (3) a finite state-transition diagram in a finite state controller.

The tape has infinitely many squares (cells) extending to both directions. Each
square contains a symbol, such as 0, 1 and blank. The blank symbol can be written
explicitly as B to avoid confusion.

Initially, the tape contains the input string between two blanks. All other squares
are blank. The head points to the first input symbol (or to the blank square left of the
first input symbol). The state-transition table resides in the finite state controller.

The state-transition diagram or the equivalent state transition table governs the
behavior of a Turing machine, as illustrated in Fig. 3.4 and Table 3.11. This
particular Turing machine does a cleanup. It scans the input string from left to
right, erases each 0 or 1 (replacing 0 or 1 by blank B), and stops when reads a @.

The machine starts at initial state q0 and stops at final state q1. Sometimes we
explicitly name the final state q1 as Halt, when there is just one final state. At each
step, the head reads the symbol in the pointed square, writes an appropriate symbol,
and moves the head to left or right, and then the machine transition to the next state.

Definition: A Turing machine is a 7-tuple M ¼ {Q,Σ,Γ, δ, q0, qAccept, qReject}.

• Q is a finite, non-empty set of states.
• Σ is a finite, non-empty set of input symbols.
• Γ is a finite, non-empty set of tape symbols. There is a special character B 2 Γ for

the blank symbol. We require B =2 Σ and Σ ⊂ Γ.
• δ : (Q � {qAccept, qReject}) � Γ!Q � Γ � {!, } is the transition function.
• q0 2 Q is the initial state.

3.2 Automata and Turing Machines 109

• qAccept 2 Q is the accept state.
• qReject 2 Q is the reject state.

To make the definition concrete, let us review again the cleanup Turing machine
illustrated in Fig. 3.4 and Table 3.11. For this machine, Q¼ {q0, q1}, Σ¼ {0, 1,@},
Γ ¼ {0, 1, @ ,B}. The initial state is q0. The accept state is q1 which means the
machine successfully finishes the cleanup process. There is no reject state. The
transition function δ is illustrated in Fig. 3.4 and Table 3.11.

If we look at the transition function more carefully, we may find that there is no
definition of δ(q0,B). When the computational task to erase the input string ends with
the symbol @, it is impossible to read B in state q0. However, it is always useful to
write down the rule for all cases in order to handle exceptional conditions. One
possible way to handle it is to set δ(q0,B) ¼ (q2,B,!) where q2 is the reject state.
This means if the end of the input is not @, the Turing machine will go to the reject
state q2 and stop.

Example 3.16. Palindromes Can Be Recognized by a Turing Machine
In Example 3.14, we claim that Palindromes cannot be recognized by finite autom-
ata. Here, we show it can be recognized by a Turing machine. Thus, Turing
machines are more powerful than finite automata.

The Turing machine starts at state q0 with the input string on the tape, enclosed
between two blank squares. The machine has two final states. When the input string
is not a palindrome, the machine eventually stops at state qReject, and outputs a 0 on
the tape. When the input string is a palindrome, the machine eventually stops at state
qAccept, and outputs a 1 on the tape.

The input alphabet contains only two symbols: 0 and 1. The tape alphabet
contains an additional symbol: the blank symbol B. The state transition table is
shown in Table 3.12. Note that there are nine states, but only seven states trigger

Table 3.11 State transition table of a Turing machine

Current state Symbol read Symbol to write Head move Next state

q0 0 B ! q0
q0 1 B ! q0
q0 @ B ! q1 (Halt)

0/B,
1/B,

0 0 0 0 1 0 1 @B B

Finite
State

Controller

q0 q1

@/B, ←←←
Fig. 3.4 Organization of a Turing machine, with a cleanup function example

110 3 Logic Thinking

state transitions. The machine stops when it enters any of the two final states. A final
state does not trigger a state transition. In each of the seven states, the head may read
one of three tape symbols 0, 1, or B. There are 3�7¼21 transitions in Table 3.12.

Figure 3.5 shows initial and final configurations of a Turing machine for recog-
nizing palindromes, i.e., decides whether a string is a palindrome.

How does this Turing machine work? The basic idea is as follows.

• Iterate over the given the input string.
• When the first symbol and the last symbol match (they are both 0 or both 1), erase

them and go to the next iteration.
• When the first symbol and the last symbol do not match, erase the remaining

string and enter qReject.
• Until all symbols of the input string are all erased, then enter qAccept.

For instance, consider the input string 001010, which is not a palindrome. The
tape configurations of the iterations are shown below:

• Iteration 1:
. . .B001010B. . .; first and last symbols match, erase the two symbols and go to
next iteration

• Iteration 2:
. . .BB0101BB. . .; first and last symbols do not match, reject.

Table 3.12 State transition table for a Turing machine to recognize any palindrome

Transition Current state Symbol read Symbol to write Head move Next state

1 q0 0 B ! qSeen0
2 q0 1 B ! qSeen1
3 q0 B 1 qAccept
4 qSeen0 0 0 ! qSeen0
5 qSeen0 1 1 ! qSeen0
6 qSeen0 B B qWant0

7 qSeen1 0 0 ! qSeen1
8 qSeen1 1 1 ! qSeen1
9 qSeen1 B B qWant1

10 qWant0 0 B qBack
11 qWant0 1 B qBackErase
12 qWant0 B 1 qAccept
13 qWant1 0 B qBackErase
14 qWant1 1 B qBack
15 qWant1 B 1 qAccept
16 qBack 0 0 qBack
17 qBack 1 1 qBack
18 qBack B B ! q0
19 qBackErase 0 B qBackErase
20 qBackErase 1 B qBackErase
21 qBackErase B 0 qReject

3.2 Automata and Turing Machines 111

Now, consider the input string 00100, which is a palindrome. The tape configu-
rations of the iterations are shown below:

• Iteration 1:
. . .B00100B. . .; first and last match, erase and go to next iteration

• Iteration 2:
. . .BB010BB. . .; first and last match, erase and go to next iteration

• Iteration 3:
. . .BBB1BBB. . .; one symbol matches itself, erase it and go to next iteration

• Iteration 4:
. . .BBBBBBB. . .; all symbols erased, output 1 and enter qAccept.

• Final result . . .BBB1BBBB. . .

Initial configuration:
Input string 001010 is enclosed in two
blanks, which is not a palindrome

Final configuration:
Reject, output 0

0 0 1 0 1 0 BB

q0

B 0 B B B B BB

qReject

0 0 1 0 0 BB

q0

B 1 B B B BB

qAccept

Initial configuration:
Input string 00100 is enclosed in two
blanks, which is a palindrome

Final configuration:
Accept, output 1

(b)

(a)

Fig. 3.5 Initial and final configurations of a Turing machine for palindrome recognition. (a) When
the input string is 001010. (b) When the input string is 00100

112 3 Logic Thinking

Applying the Turing machine definition to the palindrome-recognition problem,
we have the following rigorous and concrete definition: a Turing machine recogniz-
ing palindromes is a 7-tuple M ¼ {Q,Σ,Γ, δ, q0, qAccept, qReject}, where

• Q ¼ {q0, qAccept, qReject; qSeen0, qSeen1, qWant0, qWant1, qBack, qBackErase}, the three
states before the semicolon are special states common to many Turing machines:
q0 2 Q is the initial state, qAccept 2 Q is the accept state, and qReject 2 Q is the
reject state.

• The input alphabet is Σ ¼ {0, 1}.
• The tape alphabet is Γ ¼ {0, 1, B}.
• The transition function δ : (Q � {qAccept, qReject}) � Γ!Q � Γ � {!, } is

defined by Table 3.12.

The machine starts at q0, with the head points to the leftmost symbol of the input
string. When a 0 or 1 is read, the head writes a blank to the pointed square and moves
to the right, and the machine transition to state qSeen0 or qSeen1 which means the
machine has seen a 0 or a 1. In such a state, the machine moves the head to the right,
until it reads a B, indicating that the head has just passed the rightmost symbol (the
end of the string). The machine then transitions to state qWant0 or qWant1, indicating
the machine is expecting a 0 or 1 from the end of the string, to match the 0 or 1 seen.
If the head reads a matching 0 or 1 in qWant0 or qWant1, the machine erases it by
writing a B and enters state qBack, to go back to the beginning of the string and start
the next iteration. If the head reads a mismatching symbol, e.g., reading a 1 in state
qWant0, the machine enters qBackErase to erase all remaining input symbols, and then
enters qReject and halts. If the head reads a B in qWant0 or qWant1, the machine has
erased all matching 0’s and 1’s, thus the machine enters state qAccept and halts

Note that in designing the state transition table, cares must be taken to ensure
correct output, that is, a 1 is written on the tape when entering qAccept, and a 0 is
written on the tape when entering qReject.

Let us go through the step-by-step details of two small cases, for input strings
01 and 010, to verify the correctness of the Turing machine shown in Table 3.12.

For input string 01, which is not a palindrome, the sequence of transitions is
shown in the following table, where each transition is a step in the computational
process of deciding whether the input string is a palindrome. For each step, we list
the tape contents before and after the transition, where the boldfaced symbol
indicates the position of the read/write head. Before step 1, the tape contains B01B
and the head points to the square containing 0. The machine is at the initial state q0,
which triggers transition #1 in Table 3.12. After the transition, the symbol 0 is erased
and the head moves right to point to the square containing 1.

Step Before Transition After

1 B01B < # 1, q0, 0, B,!, qSeen0> BB1B
2 BB1B < # 5, qSeen0, 1, 1,!, qSeen0> BB1B
3 BB1B < # 6, qSeen0, B, B, , qWant0> BB1B
4 BB1B < # 11, qWant0, 1, B, , qBackErase> BBBB
5 BBBB < # 21, qBackErase, B, 0, , qReject> B0BB

3.2 Automata and Turing Machines 113

For input string 101, which is a palindrome, the sequence of transitions is shown
in the following table.

Step Before Transition After

1 B101B < # 2, q0, 1, B,!, qSeen1> BB01B
2 BB01B < # 7, qSeen1, 0, 0,!, qSeen1> BB01B
3 BB01B < # 8, qSeen1, 1, 1,!, qSeen1> BB01B
4 BB01B < # 9, qSeen1, B, B, , qWant1> BB01B
5 BB01B < # 14, qWant1, 1, B, , qBack> BB0BB
6 BB0BB < # 16, qBack, 0, 0, , qBack> BB0BB
7 BB0BB < # 18, qBack, B, B,!, q0> BB0BB
8 BB0BB < # 1, q0, 0, B,!, qSeen0> BBBBB
9 BBBBB < # 6, qSeen0, B, B, , qWant0> BBBBB
10 BBBBB < # 12, qWant0, B, 1, , qAccept> BB1BB

☶

3.2.3.1 Notable Details of Turing Machine

When learning Turing machines, students may experience several difficulties regard-
ing details, which are summarized below.

Finite states. Any Turing machine has a finite number of states. Let us look at
Table 3.12 again. The input string of palindrome can be of arbitrary length. How-
ever, the Turing machine has only 9 states. The same state transition table of 21 rows
is used for input string of arbitrary length. It is a mistake to design a state transition
table that depends on the length of the input string.

B =2 Σ and B 2 Γ. The input blank symbol B belongs to the tape alphabet but does
not belong to the input alphabet. It is a mistake to confuse the blank symbol B with
the capital letter B (0x42), the ASCII Space symbol (0x20), or the ASCII Null
symbol (0x00). When the input string needs to contain such symbols, we can change
the blank symbol notation to a new symbol such as β. Also note that the read/write
head points to a tape square, which contains a symbol in the tape alphabet, including
all input symbols and the blank symbol.

No stop in the middle. The Turing machine stops (halts) only when it enters a
final state, either qAccept or qReject. If it is at a non-final state, a transition will always
be triggered and the machine will enter the next state, which could be the same state
as the current one. However, the machine will never stop at a non-final state. The
reason is that by the Turing machine definition, the transition function δ is a
mathematical function, which means that δ is defined for every element
of (Q � {qAccept, qReject}) � Γ. That is, for every non-final state s and tape symbol
t, δ(s,t) is always defined, and there is always a next state to transition to.

To design a Turing machine for some specific computing problem, it is usually
more intuitive for the novice to draw state-transition diagram, e.g., Fig. 3.4. How-
ever, one drawback of state-transition diagram is that it is easy to leave some δ(s,t)

114 3 Logic Thinking

undefined. Though some transition seems impossible in the normal case, it is a good
habit to write down the full transition function so as to handle the exceptional
situations.

(|Q| � 2) � |Γ| transitions. It follows from the above discussion that the state
transition table of a Turing machine will always have (|Q| � 2) � |Γ| rows of
transitions, where |Q| is number of elements of set Q. The value 2 is for the two
final states qAccept and qReject. For example, the Turing machine in Table 3.12 has
9 states and its tape alphabet Γ has 3 elements. Thus, its state transition table has
(9-2)�3¼21 rows. Note that, the calculation only works if both accept state and
reject state exist in the Turing machine.

Explicit and implicit input/output. For any Turing machine, the input string
must explicitly appear in the tape between two blanks, before any step of state
transition happens. The output of the computation is often defined as the string
between the head-pointed square and the first blank right of it. Sometimes, we more
carefully and explicitly define the output. For instance, in Example 3.16, we define
the output to be a single-symbol string 1 for qAccept, and string 0 for qReject.

One may also simplify the situation by doing the computation without cleanup,
but assuming implicit output instead. In such a case, the output string may be mixed
with a subset of symbols of input strings and intermediate results.

3.3 Power and Limitation of Computing

Real world problems can be either abstract (e.g., mathematic problems) or concrete
(e.g., the problem of searching the Web). These problems can be formulated as
computational problems for Turing machines.

Most of the problems one can imagine can be solved by Turing machines. For
example, adding two integers, deciding whether an integer is a prime number,
finding the most economic routes for a traveling salesman, etc. However, there
exist problems that cannot be computed by any Turing machine. Some problems
cannot even be effectively expressed for a Turing machine to solve. The computer
science field has encountered paradoxes, incomputable problems, and incomplete-
ness results. Computability is the subfield of computer science that studies the
power and limitation of computers.

The existence of incomputable problems seems to be a negative fact. However,
people have found ways to exploit such negative results for positive benefits. The
following are some examples of ideas:

• Incomputable problems provide opportunities for human intelligence.
• Computationally hard problems can be used to design computer and Internet

games.
• If a privacy protection technique can be formulated as incomputable problems,

one cannot use computers alone to break privacy protection.

3.3 Power and Limitation of Computing 115

• In his recent book Life after Google: The Fall of Big Data and the Rise of the
Blockchain Economy, the futurist and industry analyst George Gilder suggests
that incomputability results by Kurt Gödel and Alan Turing provide a founda-
tional piece for future technology systems.

3.3.1 Church-Turing Hypothesis

We have an important positive result called Church-Turing Thesis, due to Alonzo
Church (1903–1995) and Alan Turing (1912–1954). Because it is actually a hypoth-
esis, not a fully proven statement, it is also called Church-Turing Hypothesis. The
thesis says that no reasonable abstract computer is more powerful than Turing
machines. More specifically, we have the following results.

A problem is Turing computable, if there is a Turing machine that correctly
solves the problem. That is, for any given input string, the Turing machine starting at
the initial state q0 will correctly stop at qAccept or qReject.

We say a problem is a computable problem, if it is Turing computable. In other
words, Turing machines are a general-purpose model for computability. If a problem
is Turing incomputable, no other reasonable abstract computer can solve the prob-
lem, either. The generality statement that

Computable = Turing computable

can be viewed as a definition supported by many proven results.
Church-Turing Thesis: Assume a reasonable abstract computer X is given. Any

problem computable in X is also Turing computable.
We say X is reducible to Turing machines. Church, Turing and other scholars

have proven that many powerful models of computation are reducible to Turing
machines. Their main method is to treat a problem as a mathematical function and
simulate a step of abstract computer X by Turing machine steps.

A more recent result is the so-called Polynomial Church-Turing Thesis: If a
problem is computable in abstract computer X and costs Tx steps, it is computable
in a Turing machine and costs Tt steps, such that Tt ¼poly(n, Tx). Here, n is the
problem size. Intuitively, the thesis means that the Turing machine is at most
polynomial times slower.

Consider the von Neumann model introduced in Chap. 2, which is a model of real
computers such as a laptop computer. The von Neumann model can be augmented
with infinite memory to obtain this result: Turing machines are as powerful as a
von Neumann computer with infinite memory and arithmetic, logic, load, store,
and conditional jump instructions. They can simulate each other with an overhead of
no more than n4.

116 3 Logic Thinking

3.3.2 (***) Incomputable Problems and Paradoxes

Computer science research also produced some seemingly negative results of com-
putability. We discuss two such incomputable problems.

The halting problem. Given the description of an arbitrary Turing machine
M and an input string x, decide whether M will terminate or run forever. “Turing
machine terminates” means it eventually enters the accept state or the reject state.

The Entscheidungsproblem (the decision problem). Given a real number,
decide if it is Turing computable. That is, if there is a Turing machine which can
write down arbitrarily long decimal digits of the real number. If one wants n digits,
for any n, the Turing machine will output the correct n digits and stop.

In this section, we show why the halting problem is not computable in Turing
machine, and leave the Entscheidungsproblem as a thinking problem.

Example 3.17. The Halting Problem Is Not Turing Computable
We firstly give an example to show the case where a Turing machine may not
terminate for some input string. Let us modify the machine in Fig. 3.4 and Table 3.11
a little bit. See Table 3.13 for the modified description of the state transition.

In this Turing machine, if the input string is 0000101@ as illustrated in Fig. 3.4,
the machine will terminate in the halt state after reading the symbol @. However, if
the input string is 0000101, the machine will never terminate and be stuck in state q0.
Thus, for the halting problem, if the input is this Turing machine and input string
0000101@, the answer should be “YES” or 1; while if the input string is 0000101,
the answer should be “NO” or 0.

Before discussing the halting problem, let us first look at the representation of
Turing machine more carefully. Any Turing machine can be represented by a 7-tuple
M ¼ {Q,Σ,Γ, δ, q0, qAccept, qReject}, so it can be represented by a finite binary string.
For example, we can write down the Turing machine in the normal way, like Q¼{q0,
q1,q2}, and then translate it to ASCII code which is a finite binary string. Note, in
such representation, not every finite binary string corresponds to a Turing machine,
but it is easy to design a Turing machine which can decide whether a finite binary
string corresponds to a Turing machine or not.

Thus, the set of all Turing machines is a subset of the set of all finite binary
strings. This means the set of all Turing machines is countable. So is the set of all
possible input strings.

We will prove the halting problem is not Turing computable by contradiction.
Suppose there exists some Turing machine H which can compute halting problem.

Table 3.13 State transition table of a Turing machine

Current state Symbol read Symbol to write Head move Next state

q0 0 B ! q0
q0 1 B ! q0
q0 @ B ! q1 (Halt)

q0 B B ! q0

3.3 Power and Limitation of Computing 117

That is, for any Turing machineM, and for any input string x,H(M, x)¼ 1 or stops in
the accept state if Turing machineM will terminate with the input string x; and H(M,
x) ¼ 0 or stops in the reject state if Turing machine M will never terminate (run
forever) with the input string x. Thus H actually computes the following matrix in
Fig. 3.6.

In this matrix, the i-th row represents the Turing machine whose binary repre-
sentation is i, and the j-th column represents the input string j. If the Turing machine
i can terminate with the input string j, the element of i-th row and j-th column in the
matrix is 1; and if the Turing machine i cannot terminate with the input string j, the
element of i-th row and j-th column in the matrix is 0. For some binary representation
i, if there is no Turing machine corresponding to i, we set the i-th row to be all
1. Note that, in this matrix, we can list all possible Turing machines and all possible
input strings. Of course, the matrix is infinitely large, with infinite number of rows
and columns. But the number of rows and columns are both countable since the
number of Turing machines and input strings are countable. Thus, the function of
Turing machine H is actually to compute such a matrix.

Now, let us define a new Turing machine G based on H as follows (Fig. 3.7).
Since H exists, we can construct such Turing machine G. Now let us consider the

case when the input string is G, the binary representation of the Turing machine G.
For simplicity, we will use G to indicate both the Turing machine and its binary
representation.

Fig. 3.6 Illustration of the halting problem

118 3 Logic Thinking

Consider the element in the G-th row and G-th column in the matrix in Fig 3.6. If
the element is 1, it means two things: (1) when the Turing machine G takes the input
string G, it should halt after finite steps. This is due to the definition of the matrix.
(2)H(G,G)¼ 1 due to the definition ofH. However, examine the definition ofG, we
know when it takes input stringG, it will runH(G,G). SinceH(G,G)¼ 1, the Turing
machine G will run forever and never halt. Contradiction.

The other case is similar. If the element in the G-th row and G-th column in the
matrix in Fig. 3.6 is 0, it also means two things: (1) when the Turing machineG takes
the input string G, it should run forever. This is due to the definition of the matrix.
(2)H(G,G)¼ 0 due to the definition ofH. However, examine the definition ofG, we
know when it takes input stringG, it will runH(G,G). SinceH(G,G)¼ 0, the Turing
machine G will go to the accept state and halt. Contradiction again.

The element must take 0 or 1, and both cases will lead to contradiction. Thus, the
assumption we made is not true. That is, there does not exist some Turing machine
H which can compute the halting problem. Equivalently, the halting problem is not
Turing computable.

☶

One might think that the reason incomputable problems exist is because Turing
machines are not powerful enough. There may exist other more powerful computa-
tional model which might be able to solve the halting problem or the decision
problem. However, Church-Turing Hypothesis tells us this is not the case. From
this viewpoint, Church-Turing Hypothesis is a negative result.

Some problems cannot even be effectively expressed as computational problems
for Boolean logic or Turing machines to solve. A class of such problems are called
paradoxes. We discuss two paradoxes below. The two cases involve self-reference
and self-contradiction.

When encoding a real-world problem into the cyberspace, we need to be aware of
paradoxes. We often need to change the problem specification to avoid any paradox.
Sometimes, we can utilize paradox to create new functionality. An example of
utilizing self-reference will be discussed in Sect. 5.3.2.

The liar paradox. When a liar says “This sentence is false”, is he telling the
truth? Remember the impatient guide problem in Examples 3.2 and 3.17. Suppose
the guide comes from the Lying Village and makes the statement “What I am saying
is false.” Is the guide lying or not?

Turing machine
Input string: binary string
 Run (,);
 If (,) = 0,

Then, go to the accept state and halt
Otherwise, run forever

Fig. 3.7 The definition of Turing machine G

3.3 Power and Limitation of Computing 119

Such paradoxes contain a strange expression when expressed in Boolean logic.
Let X stands for X¼false. Sometimes we denote this naming as X: X¼false. Now, is
X true or false?

More generally, we may define Boolean variables using self-referencing expres-
sions. An example is a pair of self-referencing expressions Q ¼ Qþ S and �Q ¼
�Qþ R. In Sect. 5.3.2, we will see that these expressions with feedbacks are partial
specification of the S-R latch, a new functionality to represent states. The contradic-
tion is reconciled, when Q before and Q after the equality sign represent the next
state and the current state, respectively.

The barber paradox. There is only one barber in a village who shaves all in the
village who do not shave themselves. Does the barber shave himself?

A mathematic version of the barber paradox is Russell’s paradox discovered by
British scholar Bertrand Russell. In set theory, Russell’s paradox considers the set
R of all sets that are not members of themselves. Is R a member of itself? If we
answer Yes (R is a member of itself), by the definition of R, R is NOT a member of
itself. If we answer No (R is not a member of itself), by the definition of R, Rmust be
a member of itself, since R is the set of all sets that are not members of themselves.
Thus, whether we answer Yes or No, a contradiction will be the result.

Russell’s paradox has contributed to the foundation of mathematics. In particular,
it stimulated the creation of modern set theory (Zermelo–Fraenkel set theory), which
is also a foundation of modern computer science.

3.3.3 (***) Gödel’s Incompleteness Theorems

In 1928, David Hilbert proposed a suggestion for the solution to the foundational
crisis of mathematics: to establish a set of axiom systems so that all mathematical
propositions can be shown to be true or false in this system within a limited number
of steps. The system Hilbert envisioned needs to answer the following questions:

• Completeness: for each of the true mathematical statements, we should be able to
give a proof in this system.

• Consistency: there is no contradiction in the system, that is, there will be no
statement that we can prove to be true and to be false in the same system.

• Decidability: we can find a way to determine whether a mathematical statement
is true or false through only “mechanized” deduction.

For the general decidability question, i.e., the Entscheidungsproblem (the deci-
sion problem), Alan Turing’s 1936 paper gave a negative answer.

How about the completeness and the consistency questions? In 1931, only 3 years
after Hilbert’s suggestion, Kurt Gödel (1906–1978) gave negative answers to these
questions. The negative answers are called Gödel’s incompleteness theorems.

Gödel’s first incompleteness theorem: Any mathematical system that includes
elementary number theory (natural numbers, addition, and multiplication) cannot
have completeness and consistency at the same time.

120 3 Logic Thinking

Usually, researchers choose to sacrifice completeness in this dilemma. That is to
say, for any reasonably sophisticated mathematical system, there exists some state-
ment that is true, but we cannot prove it in this system. Some researchers have
suggested that the “Goldbach’s conjecture” may be the case. Here “reasonably
sophisticated” means including the elementary number theory known as Peano
Arithmetic shown in Box 3.3.

Box 3.3. Peano’s Axioms of Arithmetic
In 1889, Giuseppe Peano (1858–1932) proposed Peano’s axioms of arith-
metic, later also called Peano Arithmetic for simplicity. This result has been
widely used since then for mathematic logic in general and elementary number
theory in particular. At a minimum, Peano Arithmetic consists of the following
five axioms, and addition and multiplication operators can be defined based on
these axioms.

1. Zero is a natural number; 0 2 ℕ .
2. Every natural number has a successor in the set of natural numbers;
8n 2 ℕ [S(n) 2 ℕ].

3. Zero is not the successor of any natural number; 8n 2 ℕ [S(n) 6¼ 0].
4. If the successors of two natural numbers are the same, then the two original

numbers are the same; 8m, n 2 ℕ [S(m) ¼ S(n)!m ¼ n].
5. If a set contains zero and the successor of every natural number, then the set

contains the set of natural numbers. This is called the induction axiom.

Gödel’s second incompleteness theorem: For any mathematical system that
includes elementary number theory, if it is consistent, then its consistency cannot be
proved within itself.

In other words, whether there is a paradox in the system cannot be solved by
relying on this system alone.

Gödel’s incompleteness theorems deny Hilbert’s proposal. Gödel’s first incom-
pleteness theorem tells us that truth and provability are two different things. A
provable statement must be true if we stick to consistency, but a true statement is
not necessarily provable since we sacrifice completeness. Gödel’s second incom-
pleteness theorem tells us that consistency cannot be proved within a mathematical
system itself.

Example 3.18. A Case of Gödel’s First Incompleteness Theorem
We discuss a specific statement to make our understanding of Gödel’s first incom-
pleteness theorem more concrete. The statement is Goodstein theorem, which is true,
but cannot be proven in any mathematical system that includes elementary number
theory.

We first need the concept of a Goodstein sequence.
Given any natural number n, its hereditary base-b representation is obtained as

follows. First, write the sum of power base-b representation of n. If some exponent

3.3 Power and Limitation of Computing 121

m is greater than b, replace m by m’s own sum of power base-b representation.
Repeat this process until all numbers are less than or equal to b.

For instance, given n¼266, its base-2 representation is 28 + 23 + 2. There are two
numbers >2, i.e., 8 and 3. Replacing them by their base-2 representations, we have

22
3 þ 22þ1 þ 2. Now we have only one number >2, which is 3. Replacing 3 with its

base-2 representation, we have 22
2þ1 þ 22þ1 þ 2 . This is the hereditary base-2

representation of 266.
The change-of-base function Rb(n) changes b to b+1 in n. That is, Rb(n) replaces

every b with b+1 in the hereditary base-b representation of n. For instance, for

n¼266, the hereditary base-2 representation is 22
2þ1 þ 22þ1 þ 2 . Changing every

occurrence of 2 to 3, we have R2 266ð Þ ¼ 33
3þ1 þ 33þ1 þ 3, which is in the form of a

hereditary base-3 representation of a much larger number:

R2 266ð Þ ¼ 443426488243037769948249630619149892887:

The Goodstein sequence for a given natural number n is denoted as (n)k, where
k ranges over the set of natural numbers, and the value of each (n)k is written as
follows:

nð Þ0 ¼ n

nð Þ1 ¼ R2 nð Þ � 1

nð Þ2 ¼ R3 nð Þ1
� �� 1

. . .

nð Þkþ1 ¼
Rkþ2 nð Þk

� �� 1 if nð Þk > 0

0 if nð Þk ¼ 0

(
:

For instance, for n¼266, the Goodstein sequence is

266ð Þ0 ¼ 22
2þ1 þ 22þ1 þ 2 ¼ 266

266ð Þ1 ¼ 33
3þ1 þ 33þ1 þ 2 � 4:4� 1038

266ð Þ2 ¼ 44
4þ1 þ 44þ1 þ 1 � 3:2� 10616

. . .

A Goodstein sequence has three noteworthy properties:

• To go from one number to the next, two operations are performed. First, apply the
change-of-base function, then subtract 1 from the result. The change-of-base
function seems to significantly increase the number.

• The sequence grows tremendously fast. For instance, going from (266)1 to (266)2,
the number grows to 3.2 � 10616. Compare this to the fact that there are only
about 1090 basic particles in the observable universe.

122 3 Logic Thinking

• The striking property is that this quickly growing sequence approaches 0! This is
Goodstein theorem.

Goodstein theorem: Every Goodstein sequence always approaches 0.
That is, for any natural number n, there exists another natural numberm, such that

(n)m ¼ 0.
In 1944, Reuben Goodstein proved the Goodstein theorem. In 1982, Laurie Kirby

and Jeff Paris showed that Goodstein theorem cannot be proven in any mathematical
system that includes elementary number theory (i.e., Peano’s Arithmetic).

Let us consider (4)k in more detail, i.e., the Goodstein sequence for number
4. Goodstein’s function G(n) ¼ m is a function that maps n to m, where m is the
smallest natural number such that (n)m ¼ 0. It is known that

G 4ð Þ ¼ 3� 2402653211 � 3 � 6:895� 10121210694:

It is impractical to compute all the non-zero items of the sequence. Our TA,
Hongrui Guo, computed the first five, the largest five, and the last five items of the
sequence before it reaches 0. These 15 values are as the following.

4ð Þ0 ¼ 22 ¼ 4

4ð Þ1 ¼ 33 � 1 ¼ 2� 32 þ 2� 31 þ 2 ¼ 26

4ð Þ2 ¼ 2� 42 þ 2� 41 þ 2� 1 ¼ 41

4ð Þ3 ¼ 2� 52 þ 2� 51 þ 1� 1 ¼ 60

4ð Þ4 ¼ 2� 62 þ 2� 61 � 1 ¼ 2� 62 þ 6þ 5 ¼ 83

. . .

4ð Þmax�2 � 1st1000DigitsOfMax

4ð Þmax�1 � 1st1000DigitsOfMax

4ð Þmax � 1st1000DigitsOfMax

4ð Þmaxþ1 � 1st1000DigitsOfMax

4ð Þmaxþ2 � 1st1000DigitsOfMax

. . .

4ð ÞG 4ð Þ�4 ¼ 4

4ð ÞG 4ð Þ�3 ¼ 3

4ð ÞG 4ð Þ�2 ¼ 2

4ð ÞG 4ð Þ�1 ¼ 1

4ð ÞG 4ð Þ ¼ 0

The sequence (4)k reaches the maximal value at index max. The maximal value is
(4)max ¼ 3.44754040154631. . . . 10121210695. It is a natural number with 121210695

3.3 Power and Limitation of Computing 123

decimal digits. The first 1000 decimal digits of the largest numbers in the
sequence are:

34475404015463100828681949798057549784788749379014868294825824
71181371747989862435944126537723138836357706343870670981471373770
12311972582711710423708488689955731916776345646600366175225653655
66707660736638221550278724966252575033308853486678486334114931903
14615269655969736866492160948225290436847365886709876147562092042
0058686649733118291758563321381202195171984182018123353393010562
71348711228774295067529019486998025111083607801145279169927216822
91424810789456193340854410358943085149505243047152149159691566503
1176899651610957212217360780656154707158846933785793375188967822
22962282279777804376115277338671809923516166212703892541980539479
29809819394864855229092228788578838875603483673163812706732806753
47382769219015375432616565108108081814310923711203313305968399971
67695778121779569475400362539158893903885373347987634477272363235
75017620929937195505529441455741049571737770925493092772866804132
38831342452145449516230927445255255771310652274759352993005306606
008562973170880130089684337752.

☶

3.4 Exercises

1. What is NOT a possible truth value of proposition formula P _ Q?

(a) 0
(b) 1
(c) Either 0 or 1
(d) Both 0 and 1

2. What is NOT a possible truth value of proposition formula (P _ Ø Q)!P?

(a) 0
(b) 1
(c) Either 0 or 1
(d) Both 0 and 1

3. Let the proposition formula G be P!Q. How many assignments of the truth
value to P, Q are there to make G false?

(a) 1
(b) 2
(c) 3
(d) 4

124 3 Logic Thinking

4. Let the proposition formula G be (ØQ _ R) $ (ØP ^ R). How many assign-
ments of the truth value to P, Q, R are there to make G false? Here, A $ B is
defined as (A!B) ^ (B!A)

(a) 2
(b) 3
(c) 4
(d) 5

5. Write down the truth table of two proposition formulae P!Q and Ø P _ Q and
show that they are equivalent formulae.

6. Write down the disjunctive normal form of the two proposition formulae P _ Q
and P ^ Q.

7. Write down the disjunctive normal form of the proposition formula P _ Ø P.
8. The conjunctive normal form of proposition formula Ø(P!Q) is

(a) (P _ Q) ^ (P _ Ø Q) ^ (ØP _ Ø Q)
(b) P _ Ø Q
(c) (P _ Q) ^ (ØP _ Q) ^ (ØP _ Ø Q)
(d) P ^ Ø Q

9. In the theorem of disjunctive normal form, why do we need the assumption F
(x1, x2, . . ., xn) ≢ 0?

10. Which of the following formula is not a tautology? Tautology refers to the
proposition formula that is true in every possible assignment.

(a) (P
L

P)$ (Q ^ Ø Q)
(b) (P

L
Ø P)$ (Q _ Ø Q)

(c) ((P _ Q)!P)$ (R!R)
(d) ((P ^ Q)!P)$ (R!R)

11. Which of the following formula is a tautology?

(a) (P!Q)$ (Q!P)
(b) (P!Q)$ (ØQ! Ø P)
(c) (P!Q)$ (ØQ!P)
(d) (P!Q)$ (Q! Ø P)

12. Which of the following equation about “exclusive or” is correct?

(a))()()(zyzxzyx ∧⊕∧=∧⊕
(b))()()(zyzxzyx ∨⊕∨=∨⊕
(c))()()(yxyx ¬⊕¬=⊕¬
(d))()()(zyzxzyx ⊕∨⊕=⊕∨

13. How many different Boolean functions of 4 variables are there?

(a) 16
(b) 32
(c) 65,536
(d) 4,294,967,296

3.4 Exercises 125

14. Every playing card has two sides. One side is a number and the other side is a
letter. Now there are four cards on the table, with A, 3, S, 8 facing up. In the
worst case, how many cards do you need to turn over to confirm whether the
following proposition is true for these four cards: the number on the vowel card
(cards with letters AEIOU) must be even.

(a) 3
(b) 2
(c) 1
(d) 4

15. Three people, Alice, Bob and Charlie, said the following three sentences.

• Alice: Both Bob and Charlie lie.
• Bob: I tell the truth.
• Charlie: Bob lies.

Which of the following choices must be true?

(a) Charlie lied.
(b) Alice lied.
(c) Bob lied.
(d) All the previous three choices may be false.

16. Is the following logic correct? That is, assuming that the premise is true, is the
conclusion also true? Please explain your answer.

• Premise (1): students who take the course of Introduction to Computer
Science can master Golang.

• Premise (2): Some students who master Golang can serve as the teaching
assistants in the course of Introduction to Computer Science next year.

• Conclusion: some students who take the course of Introduction to Computer
Science can serve as teaching assistants next year.

17. Denote by P the statement “I will travel around the world” and Q the statement
“I have enough money”. Let f be the statement “I will travel around the world,
only if I have enough money”. Which is the correct symbolization of f?

(a)
Q! P

(b)
P! Q

(c)
P$ Q

(d)
ØP _ ØQ

126 3 Logic Thinking

18. Let P(x) denote the statement “x masters Golang”, Q(x) denote the statement “x
take the course of Introduction to Computer Science”, and R(x) denote the
statement “x can serve as teaching assistants in the course of Introduction to
Computer Science next year”. Let f be the statement “students who take the
course of Introduction to Computer Science can master Golang” and g be the
statement “some people who master Golang can serve as teaching assistants in
the course of Introduction to Computer Science next year”. Which is the correct
symbolization of f and g?

(a)
f : 8x Q xð Þ ^ P xð Þð Þ; g : ∃x P xð Þ ^ R xð Þð Þ

(b)
f : 8x Q xð Þ ! P xð Þð Þ; g : ∃x P xð Þ ! R xð Þð Þ

(c)
f : 8x Q xð Þ ! P xð Þð Þ; g : ∃x P xð Þ ^ R xð Þð Þ

(d)
f : 8x Q xð Þ ^ P xð Þð Þ; g : ∃x P xð Þ ! R xð Þð Þ

19. Can a Turing machine stop in the middle? Select the correct answer.

(a) No. A Turing machine stops when it enters an accept state or a reject state.
(b) Yes. A Turing machine can stop before it enters an accept state or a reject

state, because the head sees a symbol not recognizable.
(c) Yes. A Turing machine can stop before it enters an accept state or a reject

state, because the machine enters a state with no next state.
(d) Yes. A Turing machine can stop before it enters an accept state or a reject

state, because the state transition table has only a finite number of entries,
which cannot model all possible state transitions.

20. Design a Turing machine to accept the language L ¼ {0n | n � 1} where the
input alphabet is Σ ¼ {0, 1} and B represents the blank symbol. That is, the
Turing machine should accept 0 or 000, but reject 010 or 100.

21. Design a Turing machine to accept the language L ¼ {0a1b2c | a, b, c � 0,
a + b¼ c} where the input alphabet is Σ¼ {0, 1, 2}. That is, the Turing machine
should accept 0122 or 02, but reject 012 or 1002.

22. (***) In the definition of Turing machine, if the transition function is specified
as Q� Γ!Q� Γ � {!}, which means that the Turing machine can only move
its head to the right and cannot move its head to the left in each state, we call it a
right-moving Turing machine. Which of the following propositions about
right-moving Turing machine and Turing machine is correct?

(a) There is a computing task which can be decided by Turing machine, but not
by right-moving Turing machine.

3.4 Exercises 127

(b) There is a computing task which can be decided by the right-moving Turing
machine, but not by Turing machine.

(c) Right-moving Turing machine and Turing machine have the equivalent
computing power.

(d) None of the above three propositions has been proved at present.

23. (***) Use the Pumping Lemma to prove that palindromes cannot be recognized
by finite automata.

We say that an automaton recognizes the language of all palindromes, if
when a character string of finite length is fed to the automaton as input, the
automaton will finish in finite number of steps and output 1 if the string is a
palindrome, and 0 if the string is not a palindrome.

Pumping Lemma. Let L be a language recognized by finite automata. Then
there exists an integer n depending only on L such that every string w 2 L of
length at least p (called the “pumping length”) can be written as w ¼ xyz (w can
be divided into three substrings), satisfying the following conditions:

(a) |y| � 1
(b) |xy| � p
(c) 8k � 0, xykz 2 L

24. Regarding the Church-Turing Hypothesis, which of the following is correct?

(a) The Hypothesis shows the generality feature of logic thinking. It says that
Turing machine is a general-purpose model of computation.

(b) The Hypothesis says that Turing machine is not as general purpose as my
laptop computer, because a Turing machine cannot create a PowerPoint
presentation file.

(c) The Hypothesis says that Turing machine is general-purpose. Thus, one can
use Turing machine to automatically prove the Goodstein theorem.

(d) The Hypothesis says that Turing machine and my laptop computer have
equal power, in terms of computability.

3.5 Bibliographic Notes

The chapter quotation is from Professor Georg Gottlob of Oxford University, in a
keynote speech addressing the 2009 European Computer Science Summit
[1]. Kleene logic and the number of Kleene expressions are discussed in [2]. Kirby
and Paris showed that Goodstein’s theorem [3] cannot be proven in a mathematical
system containing Peano Arithmetic [4].

128 3 Logic Thinking

References

1. Gottlob G (2009) Computer science as the continuation of logic by other means. Keynote
Address, European Computer Science Summit

2. Mukaidono M (1982) New canonical forms and their application to enumerating fuzzy switching
functions. In Proceedings of 12th international symposium on multiple-valued logic, pp 275–279

3. Goodstein RL (1944) On the restricted ordinal theorem. J Symbol Logic 9(2):33–41
4. Kirby L, Paris J (1982) Accessible independence results for Peano arithmetic. Bull Lond Math

Soc 14:285–293

References 129

Chapter 4
Algorithmic Thinking

So if an algorithm is an idealized recipe, a program is the
detailed set of instructions for a cooking robot preparing a
month of meals for an army while under enemy attack.
—Brian Kernighan, 2017

Algorithmic thinking is concerned with solving problems smartly, by designing and
using algorithms. We look at the world through an algorithmic lens.

A problem is specified by rigorously specifying the input and the desired output.
An algorithm is a set of rules specifying the sequences of computational steps for
solving a specific problem. That is, for any given input data, the algorithm produces
the desired output data. Thus, an algorithm is specified as follows:

A Specific Algorithm
• Input: specifying the given input data.
• Output: specifying the desired output data.
• Steps: specifying the sequence of computational steps.

What exactly does smart mean in solving problems smartly? The following four
characteristics of algorithmic thinking are noteworthy. Discussing these four char-
acteristics constitutes the main contents of this chapter.

• A smart way to define algorithms. Donald Knuth gives a five-point definition of
algorithms. Here, smartness manifests as simplicity. This definition captures the
essence of algorithms, is extremely simple, yet universally applicable. Also, the
simple definition makes it easy to check if a sequence of steps is an algorithm.

• A smart way to measure algorithms. We use asymptotic notations and asymp-
totic analysis methods to measure and analyze the time and space complexities of
algorithms. This asymptotic way avoids many irrelevant details and idiosyncra-
sies. It also reveals an important division of the hardness of computational
problems: the tractable (called P) and the intractable (called NP).

• Smart paradigms to design algorithms. We discuss several representative para-
digms to reveal concrete skills and crafts, including divide-and-conquer, dynamic
programing and greedy paradigms. They help design clever and much faster
algorithms.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
Z. Xu, J. Zhang, Computational Thinking: A Perspective on Computer Science,
https://doi.org/10.1007/978-981-16-3848-0_4

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3848-0_4&domain=pdf
https://doi.org/10.1007/978-981-16-3848-0_4#DOI

• Smart variations to adapt for problem nuances. Here, smartness manifests as
flexibility. Problem nuances are utilized to increase algorithmic efficiency.

4.1 What Are Algorithms

We first discuss the algorithm definition and how to measure algorithms. The bubble
sort algorithm is used as an illustrative example. In Sects. 4.2 and 4.3, we introduce
the design and analysis of some representative algorithms.

4.1.1 Knuth’s Characterization of Algorithm

In his seminal work The Art of Computer Programming, Donald Knuth proposed a
five-point definition of algorithm, which has been widely accepted and used.

Definition. An algorithm is a finite set of rules specifying sequences of compu-
tational steps for solving a given problem, with the following five properties.

• Finiteness. An algorithm must always terminate after a finite number of steps.
• Definiteness. Each step of an algorithm must be precisely defined, that is, the

actions to be carried out must be rigorously and unambiguously specified.
• Input. An algorithm has zero or more inputs, given before the algorithm begins or

during the algorithm’s execution.
• Output. An algorithm has one or more outputs, which relate to the inputs.
• Effectiveness. Every operation of an algorithm must be sufficiently rudimentary,

such that in principle, the operation can be done by a human using paper and
pencil, in finite time.

From the algorithmic lens, a problem is often specified as follows: design an
algorithm according to Knuth’s definition, such that for any given input data, it
produces the desired output data. The algorithm is specified as follows, where the
Steps part must satisfy the five properties in Knuth’s definition.

• Input: specifying the given input data.
• Output: specifying the desired output data.
• Steps: specifying one or more sequences of computational steps.

Students can use a programming language to specify an algorithm. In fact, such a
specification is more than a specification, but also an implementation of the algo-
rithm, because the program can be compiled and automatically executed on a
computer.

However, the chapter quotation tells us that an algorithm is not the same as a
program. The quicksort algorithm was discovered before the invention of the Go
programming language. Many algorithms were designed and used long before the
modern computer era.

132 4 Algorithmic Thinking

Algorithms represent essential ideas of programs. They are sufficiently detailed
(Knuth’s five points) to ensure that they are step-by-step procedures, but ignore
many syntactic and semantic details of any particular programming language. In the
design and analysis of algorithms, people often use pseudocode, i.e., some form of
high-level natural language mixing mathematic notations, to specify an algorithm.
This chapter follows this practice.

Example 4.1. Algorithm Versus Non-algorithm
Consider the problem of finding a common divisor of two positive integers x and y.
The problem is easily specified:

• Input: Two positive integers x and y.
• Output: A positive integer z such that x % z ¼ 0 and y % z ¼ 0.

For instance, for input numbers x¼36 and y¼24, a desired output is 3. Indeed, the
positive integer 3 is a common divisor, since 24%3¼0 and 36%3¼0.

One may devise many sequences of computational steps to solve this problem.
However, a sequence of computational steps is not necessarily an algorithm. An
algorithm must satisfy Knuth’s five properties. Let us contrast two specifications.

The first specification (CD1) randomly picks a positive integer z and checks to see
if it is a common devisor of x and y.

CD1: Randomly Pick and Check
• Input: Two positive integers x and y.
• Output: A positive integer z such that x % z ¼ 0 and y % z ¼ 0.
• Steps:

while true
randomly pick a positive integer z
if (x % z == 0) and (y % z == 0) then halt

However, CD1 is not an algorithm because it violates some of the five properties.

• It may never stop, violating the finiteness property.
• The step “randomly picking a positive integer” is not sufficiently rigorous or

unambiguous. Out of the set of infinitely many positive integers, what is the
meaning of “randomly picking”? It violates the definiteness property.

The second specification (CD2) is a revised version of Euclid’s algorithm. The
idea is to repetitively replace the larger of x and y by y and x % y, till y ¼ 0.

CD2: Euclid’s Algorithm
• Input: Two positive integers x and y such x > y.
• Output: A positive integer z such that x % z ¼ 0 and y % z ¼ 0.
• Steps:

4.1 What Are Algorithms 133

while y 6¼ 0
x, y = y, x % y

z = x

CD2 is indeed an algorithm. In fact, it does more than finding a common divisor,
but finding the greatest common divisor of x and y, i.e., gcd(x, y). We leave it as
exercises to show that CD2 indeed satisfies Knuth’s five properties, and the algo-
rithm finds gcd(x, y)¼12, given two inputs x¼36 and y¼24.

☶

4.1.2 The Sorting Problem and the Bubble Sort Algorithm

The sorting problem is a classic problem in computer science. The purpose of sorting
is to adjust a sequence of “out-of-order” numbers into an ordered sequence of
numbers. For simplicity, we assume that all positive integers are stored in an
array, these integers have different values, and we need to sort these positive integers
from small to large. More formally, the sorting problem is:

The Sorting Problem
• Input: a sequence <a1, a2, . . ., an > of n positive integers.
• Output: a reordered sequence < a01, a

0
2, . . . , a

0
n > such that a01 � a02 � . . . � a0n:

People have developed various algorithms to solve the sorting problem, such as
bubble sort, insertion sort, quicksort, merge sort, heap sort, etc. They vary in
simplicity, efficiency, and suitability to different application scenarios. They also
provide rich examples for the design of algorithms. In this section, we discuss the
bubble sort algorithm as an example to appreciate how an algorithm works. In Sect.
4.2, we will discuss insertion sort and merge sort to show the power of the divide-
and-conquer strategy. In Sect. 4.3, we will further introduce the quicksort algorithm
which is more sophisticated.

Example 4.2. The Bubble Sort Algorithm
The name “bubble sort” comes from the fact that large numbers will gradually
bubble up to the top of the sequence through comparison and exchange operations,
just like bubbles rising from the bottom in a water tank. The algorithm works as
follows (Fig. 4.1).

The idea of bubble sort is very simple. In each round, compare every adjacent pair
of numbers from left to right, and exchange the two numbers of a pair if the larger
one is on the left side of the smaller one. After one round, the largest number will be
moved to the rightmost position. We then go to the next round and compare-and-
exchange every pair of numbers from left to right again.

For input A¼[6, 2, 4, 1, 5, 9], the algorithm’s sequence of execution steps is
shown in Table 4.1. The output is A¼[1, 2, 4, 5, 6, 9].

134 4 Algorithmic Thinking

Input: An array A of length to be sorted, e.g., A=[6, 2, 4, 1, 5, 9].
Output: A sorted array A, e.g., A=[1 , 2, 4, 5, 6, 9].
Steps:

for i = 1 to n-1 // for each round
for j = 1 to n-i // compare every adjacent pair

if A [j]> A [j + 1] then exchange A [j] with A [j + 1];

Fig. 4.1 The bubble sort algorithm

Table 4.1 Bubble sort [6, 2, 4, 1, 5, 9] into [1, 2, 4, 5, 6, 9]

Outer loop Inner loop State before State after

First round 1st comparison
6>2, exchange

6, 2, 4, 1, 5, 9 2, 6, 4, 1, 5, 9

2nd comparison
6>4, exchange

2, 6, 4, 1, 5, 9 2, 4, 6, 1, 5, 9

3rd comparison
6>1, exchange

2, 4, 6, 1, 5, 9 2, 4, 1, 6, 5, 9

4th comparison
6>5, exchange

2, 4, 1, 6, 5, 9 2, 4, 1, 5, 6, 9

5th comparison
6<9, no exchange

2, 4, 1, 5, 6, 9 2, 4, 1, 5, 6, 9

Second round 1st comparison
2<4, no exchange

2, 4, 1, 5, 6, 9 2, 4, 1, 5, 6, 9

2nd comparison
4>1, exchange

2, 4, 1, 5, 6, 9 2, 1, 4, 5, 6, 9

3rd comparison
4<5, no exchange

2, 1, 4, 5, 6, 9 2, 1, 4, 5, 6, 9

4th comparison
5<6, no exchange

2, 1, 4, 5, 6, 9 2, 1, 4, 5, 6, 9

Third round 1st comparison
2>1, exchange

2, 1, 4, 5, 6, 9 1, 2, 4, 5, 6, 9

2nd comparison
2<4, no exchange

1, 2, 4, 5, 6, 9 1, 2, 4, 5, 6, 9

3rd comparison
4<5, no exchange

1, 2, 4, 5, 6, 9 1, 2, 4, 5, 6, 9

Fourth round 1st comparison
1<2, no exchange

1, 2, 4, 5, 6, 9 1, 2, 4, 5, 6, 9

2nd comparison
2<4, no exchange

1, 2, 4, 5, 6, 9 1, 2, 4, 5, 6, 9

Fifth round 1st comparison
1<2, no exchange

1, 2, 4, 5, 6, 9 1, 2, 4, 5, 6, 9

4.1 What Are Algorithms 135

Let us take another look at the bubble sort algorithm from the viewpoint of
Knuth’s characterization. It is indeed an algorithm according to Knuth’s definition.
The description of the algorithm defines a finite set of rules for specifying the
sequence of computational steps to solve the sorting problem.

This specification satisfies the five properties in Knuth’s definition of algorithms.

• Finiteness. In the bubble sort algorithm, the outer loop needs to be executed n� 1
times; for the i-th round, the inner loop contains (n � i) comparisons and at most

(n � i) exchange. Therefore, the algorithm must terminate within
Pn�1

i¼1
�

n� ið Þ ¼ n n�1ð Þ
2 steps.

• Definiteness. The meaning of each step in the bubble sort algorithm is very clear.
• Input. There are two inputs. One is the array A to be sorted, and the other is the

length n of the array.
• Output. The output is the sorted array A, which share space with the input.
• Effectiveness. The basic operations of bubble sort are comparison and exchange.

Both operations are sufficiently rudimentary. People can use pen and paper to
achieve these operations accurately.

The bubble sort algorithm is inefficient, requiring roughly n2/2 comparison
operations. However, the algorithm has the obvious advantage of simplicity. It
consists of a straightforward double loop and an easy-to-understand loop body. In
addition, it has the robustness advantage: in the case when a small number of errors
of comparison operations may occur, the resulting output will still be a mostly sorted
sequence, since the algorithm does comparisons only on adjacent numbers.

☶

4.1.3 Asymptotic Notations

It is always important to know whether an algorithm is efficient or not. Given a
problem or an algorithm, how much resource (such as execution time or storage
space) is theoretically required? For example, in the bubble sort algorithm in
Example 4.2, for for n positive integers, the algorithm requires n(n�1)/2 compari-
sons and at most n(n�1)/2 exchange steps. Usually, we do not need to know the
exact number or quantity of resource required. We can say the bubble sort algorithm
requires roughly n2 steps, or more professionally, we say the time complexity of
bubble sort algorithm is O(n2). Here, O(n2) is the asymptotic notation of “exactly n
(n�1)/2 comparisons and at most n(n�1)/2 exchange steps”.

We usually use the asymptotic notations such as O(�), o(�), Ω(�) to describe the
efficiency of the algorithms or problems. The following is the formal definition of
asymptotic notations.

Definition: let f, g : ℕ ! ℕ be two functions, where ℕ is the set of natural
numbers.

136 4 Algorithmic Thinking

• f(n) ¼ O(g(n)) if ∃ constant c, d > 0, 8 n > d, f(n) � cg(n).

• f nð Þ ¼ o g nð Þð Þ if lim
n!1

f nð Þ
g nð Þ ¼ 0.

• f(n) ¼ Ω(g(n)) if ∃ constant c, d > 0, 8 n > d, f(n) � cg(n).
• f(n) ¼ Θ(g(n)) if f(n) ¼ O(g(n)) and f(n) ¼ Ω(g(n)).

Intuitively, these notations have the following asymptotic meanings:

• The big-O notation denotes that g is an upper bound of f;
• The small-o notation denotes that g is a strict upper bound of f;
• The Ω notation denotes that g is a lower bound of f; and
• The Θ notation denotes that g is the same order of f.

It is a good learning practice to compare these notations in one place with some
concrete values, to see their differences. For instance, given f(n) ¼ n1.58 and g
(n) ¼ n2, we have the equalities and inequalities shown in Table 4.2.

The above table reveals something interesting regarding equality when
expressing asymptotic values: the commutativity law and the transitivity law of
ordinary math do not hold anymore. It is correct to write n1.58 ¼ O(n2), but incorrect
to write O(n2) ¼ n1.58 or n2 ¼ O(n1.58). In fact, the following equalities hold.
However, O(n4) 6¼ O(n1.6).

n1:58 ¼ O n4
� �

,

n1:58 ¼ O n3
� �

,

n1:58 ¼ O n2 þ n� 3
� �

,

n1:58 ¼ O n1:6
� �

:

The meaning of the equal sign (¼) has changed with asymptotic notations. It
becomes single-direction equality. The equation n1.58 ¼ O(n2) means that the right
side value n2 is an upper bound of the left side value n1.58..

The introduction of the asymptotic notations helps us focus on the dominant term
when n becomes large. Though n2 ¼ O(2n2 + 3n � 4) is correct according to the
definition of big-O notation, it is strange to use the notations in this way. Usually, we
will say 2n2 + 3n � 4 ¼ O(n2) where O(n2) represents the main term of function
2n2 + 3n� 4 and it helps us focus on how fast the function grows with the input size
n. Let us analyze the bubble sort algorithm as an example.

Table 4.2 Equalities and
inequalities regarding o, O, Ω,
Θ notations

Notation Equalities and Inequalities

o n1.58 ¼ o(n2) n1.58 6¼ o(n1.58) n2 6¼ o(n1.58)

O n1.58 ¼ O(n2) n1.58 ¼ O(n1.58) n2 6¼ O(n1.58)

Ω n1.58 6¼ Ω(n2) n1.58 ¼ Ω(n1.58) n2 ¼ Ω(n1.58)
Θ n1.58 6¼ Θ(n2) n1.58 ¼ Θ(n1.58) n2 6¼ Θ(n1.58)

4.1 What Are Algorithms 137

Example 4.3. Time Complexity of the Bubble Sort Algorithm
To sort n positive integers, we know the bubble sort algorithm requires exactly n
(n � 1)/2 comparisons but we don’t know how many exchange steps we need. The
number of exchange steps depends on the input sequence. For example, if the input
sequence is <1, 2, . . ., n>, no exchange steps are needed. If the input sequence is
<n, n � 1, . . ., 1>, the algorithm performs n(n � 1)/2 exchange steps.

Furthermore, the running time of each comparison or exchange step depends on
the physical device which executes this algorithm. So, the exactly running time
depends on many factors and is difficult to estimated. However, we can always
assume the running time of one step (either comparison or exchange) is bounded by
some constant which is independent of n for any physical device.

By using the asymptotic notations, we can safely say that the running time of the
bubble sort algorithm is O(n2). On the other hand, it is also Ω(n2) since we need n
(n� 1)/2 comparison steps. Thus, the time complexity of the bubble sort algorithm is
Θ(n2).

The asymptotic notations help us ignore some details of the running process of
the algorithm and focus on the dominant term in the running time. It shows that,
when the input size grows, the running time of bubble sort algorithm grows
quadratically, but neither linearly nor exponentially.

☶

4.2 Divide-and-Conquer Algorithms

Divide-and-conquer is an algorithm design paradigm based on the idea that we
recursively break down a problem into two or more subproblems of the similar
type, until these subproblems become simple enough to be solved directly. In this
section, we will use several examples to illustrate the idea of divide and conquer
method. We firstly focus on how different division methods affect the performance
of the algorithm. Sections 4.2.1 and 4.2.2 consider the sort problem again. They
provide two different ways to split the original problem into subproblems, and show
different performance correspondingly. In Sect. 4.2.3, we show an interesting
example which illustrates that equal division is not always the best idea. Then, in
Sects. 4.2.4 and 4.2.5, we will learn how to efficiently combine the results of
subproblems so as to obtain the result of the original problem. These two examples
illustrate that the construction of the subproblems and the combination process
should closely bound together. Finally, in Sect. 4.2.6, we summarize the key points
in the divide-and-conquer methodology.

138 4 Algorithmic Thinking

4.2.1 The Insertion Sort Algorithm

In the sorting problem, we want to order the sequence with n integers from small to
large. One natural idea is to firstly sort the first n� 1 integers and then insert the n-th
integer into the proper position of a sorted sequence. How can we sort the first n � 1
integers? Well, this is a subproblem with smaller size. This leads to the idea of the
insertion sort algorithm (Fig. 4.2).

In each round, the first i integers of the sequence are already in order. Our task is
to insert the (i + 1)-th integer into the proper position. Table 4.3 shows the detailed
process for the example input [6, 2, 4, 1, 5, 9].

The insertion sort algorithm is not a typical example of divide-and-conquer
method. But it illustrates the idea of subproblem. For the sequence of n unsorted
integers, we divide it into two subproblems: one with the first n� 1 integers, and the

A=[1, 2, 4, 5, 6, 9].

j=j-1;
exchange A[j] with A[j-1];

while (j>1) and (A[j-1]>A[j])
j=i+1;

for i = 1 to n-1

Output: A sorted array A, e.g.,
to be sorted, e.g., A=[6, 2, 4, 1, 5, 9]Input: An array A of length

Steps:

Fig. 4.2 The insertion sort algorithm

Table 4.3 The sequence of steps for insertion sorting [6, 2, 4, 1, 5, 9] into [1, 2, 4, 5, 6, 9]

Outer loop Inner loop State before State after

First round 1st comparison
6>2, exchange

6, 2 2, 6

Second round 1st comparison
6>4, exchange

2, 6, 4 2, 4, 6

2nd comparison
2<4, no exchange

2, 4, 6 2, 4, 6

Third round 1st comparison
6>1, exchange

2, 4, 6, 1 2, 4, 1, 6

2nd comparison
4>1, exchange

2, 4, 1, 6 2, 1, 4, 6

3rd comparison
2>1, exchange

2, 1, 4, 6 1, 2, 4, 6

Fourth round 1st comparison
6>5, exchange

1, 2, 4, 6, 5 1, 2, 4, 5, 6

2nd comparison
4<5, no exchange

1, 2, 4, 5, 6 1, 2, 4, 5, 6

Fifth round 1st comparison
6<9, no exchange

1, 2, 4, 5, 6, 9 1, 2, 4, 5, 6, 9

4.2 Divide-and-Conquer Algorithms 139

other with the last integer. Suppose we can solve two subproblems while the second
one is trivial; we only need to insert the last integer into the sorted sequence.

We can revise the insertion sort algorithm in the following way to emphasize the
idea of subproblems (Fig. 4.3).

Now let us consider the time complexity of insertion sort algorithm. Let T(n)
denote the time complexity of the insertion sort algorithm for n unsorted integers.
We have

T 1ð Þ ¼ 0;

T nð Þ ¼ T n� 1ð Þ þ time for insertion

� T n� 1ð Þ þ cn

for some constant c. Thus, we have T(n) ¼ O(n2).

4.2.2 The Merge Sort Algorithm

In the insertion sort algorithm just discussed above, we divide the original problem
into two unequal subproblems, where one subproblem contains n � 1 integers and
the other subproblem contains only one integer.

Figure 4.4 shows another sorting algorithm called the merge sort algorithm. Here,
we divide the original problem into two subproblems, which deal with almost equal
number of integers. That is, the sorting problem of MergeSort([A[1],. . .,A[n]]) is
first divided into two subproblems: MergeSort([A[1],. . .,A[n/2]]) and MergeSort([A
[n/2+1],. . .,A[n]]). Then we merge the results B and C of the two subproblems,
which are each a sorted sequence of integers.

InsertionSort(n) //sort sequence A[1] to A[n]
if (n==1) then return;
InsertionSort(n-1); //solve the sub-problem with A[1] to A[n-1]
j=n;

exchange A[j] with A[j-1];
j=j-1;

while (j>1) and (A[j-1]>A[j])

Fig. 4.3 The insertion sort algorithm (revision)

MergeSort([A[1],…,A[n]]) //sort sequence A[1] to A[n]

return merge(B, C);

if (n==1) then return [A[1]];

C=MergeSort([A[n/2+1],…,A[n]]);
B=MergeSort([A[1],…,A[n/2]]);

Fig. 4.4 The merge sort algorithm

140 4 Algorithmic Thinking

How can we merge two integer sequences B and C? If B and C are two arbitrary
sequences of integers, the merging problem is as difficult as the original sorting
problem. But remember that, we already know an important fact: B and C are two
sorted sequences of integers.

Figure 4.5 shows one of the ways to merge two sorted sequences. Table 4.4 shows
the example process for merging two sorted sequences B¼[2, 4, 6] and C¼[1, 5, 9].

merge(B, C) // merge two sorted sequences
while (B is not empty) and (C is not empty)

b = first integer in B;
c = first integer in C;

append A with b;
delete b from B;

else
append A with c;
delete c from C;

while (B is not empty)
b = first integer in B;
append A with b;
delete b from B;

while (C is not empty)
c = first integer in C;
append A with c;
delete c from C;

return A;

if (b<c) then

Fig. 4.5 The merge function in the merge sort algorithm

Table 4.4 The sequence of
steps for the merge function

Comparison State before State after

1st comparison
2>1, delete 1 from C

A:
B: 2, 4, 6
C: 1, 5, 9

A: 1
B: 2, 4, 6
C: 5, 9

2nd comparison
2<5, delete 2 from B

A: 1
B: 2, 4, 6
C: 5, 9

A: 1, 2
B: 4, 6
C: 5, 9

3rd comparison
4<5, delete 4 from B

A: 1, 2
B: 4, 6
C: 5, 9

A: 1, 2, 4
B: 6
C: 5, 9

4th comparison
6>5, delete 5 from C

A: 1, 2, 4
B: 6
C: 5, 9

A: 1, 2, 4, 5
B: 6
C: 9

5th comparison
6<9, delete 6 from B

A: 1, 2, 4, 5
B: 6
C: 9

A: 1, 2, 4, 5, 6
B:
C: 9

no comparison
delete 9 from C

A: 1, 2, 4, 5, 6
B:
C: 9

A: 1, 2, 4, 5, 6, 9
B:
C:

4.2 Divide-and-Conquer Algorithms 141

We are now ready to discuss the main part of the merge sort algorithm in details.
Note that when we write down B ¼ MergeSort([A[1],. . .,A[n/2]]), we recursively
call the merge sort algorithm for a smaller subproblem with input sequence A[1],. . .,
A[n/2]. In this subproblem, we will again divide it into 2 sub-subproblems: A[1],. . .,
A[n/4] and A[n/4+1],. . .,A[n/2], and recursively solve the sub-subproblems with the
merge sort algorithm. The recursion will end if the size of unsorted sequence is
1 which is the trivial case. Figure 4.6 illustrates an example for the input sequence [6,
2, 4, 5, 1, 7, 9].

Finally, let us consider the time complexity of the merge sort algorithm. Let T(n)
denote the time complexity for n unsorted integers. Similar to the insertion sort
algorithm, we have

T 1ð Þ ¼ 0;

T nð Þ ¼ T
n
2

j k� �
þ T

n
2

l m� �
þ time for merge function

Fig. 4.6 The process of merge sort algorithm with input [6, 2, 4, 5, 1, 7, 9]

142 4 Algorithmic Thinking

� 2T
n
2

l m� �
þ cn

for some constant c. Thus, we have T(n) ¼ O(n log n) which is more efficient than
the insertion sort algorithm.

The framework of both the insertion sort algorithm and the merge sort algorithm
is the same. The cost of “insertion of the last element” in the insertion sort algorithm
and the cost of “merge function” in the merge sort algorithm are also roughly the
same, where each requires at most n � 1 comparisons. The main difference is the
sizes of the two subproblems. In the insertion sort algorithm, the sizes are 1 vs. n� 1,
while in the merge sort algorithm, the sizes are n/2 vs. n/2. This reduces the time
complexity from O(n2) to O(n log n) for the sorting problem. It illustrates that when
we want to use the divide-and-conquer method to solve a problem, it is important to
smartly divide the original problem into subproblems. Often, it is smart to divide a
problem into two subproblems of almost equal sizes.

4.2.3 Single Factor Optimization

In this section, we will discuss an interesting problem called single factor optimiza-
tion. One illusion of the people who just learn the divide-and-conquer method is that
they may blindly believe the power of equal division, like the one we did in the
merge sort algorithm. This section illustrates that it is not always the case.

The single factor optimization problem considers a univariate function f defined
in the interval [a, b]. Assume that f satisfies the following single-peak condition:
f firstly (strictly) monotonically increases and then (strictly) monotonically
decreases. How can we quickly find the point x that maximize f(x)?

Well, if function f has good properties, we might compute the maximum directly.
For example, if we know the explicit representation of the function f, we can
calculate the zero point of its derivative. But in this section, we assume f is implicitly
accessed by an oracle such that the only allowed operation is that given x, the oracle
will return the value f(x). Our goal is to minimize the number of oracle queries.

Generally, in order to facilitate computer processing, we need to transfer the
problem into a discrete version. Suppose we discretize the interval [a, b] into n points,
and the function f is represented by an array A: A[1], A[2],. . ., A[n]. The choice of
n depends on the precision we want to achieve. In this way, the problem can be
described as the following searching problem:

The Single Factor Optimization Problem
• Input: array A[1], A[2], . . ., A[n] such that ∃i, 1 � i � n, A[1]<A[2]<⋯<A[i],

and A[i]>A[i+1]>⋯>A[n].
• Output: i and A[i].

4.2 Divide-and-Conquer Algorithms 143

The simplest way to solve this problem is to query the array A one by one. The
worst case needs n queries. This method can be used to find the maximum value of
any array and obliviously does not take full advantage of the “single-peak” property.

A natural idea is to search from the middle. We select to query A n
2

� �
and A n

2 þ 1
� �

.
There are several cases:

1. If A n
2

� �
> A n

2 þ 1
� �

, then according to the property of the function, we know that

the maximum value of the function is in the interval 1, n
2

� �
, so we can discard the

interval n
2 þ 1, n
� �

;

2. If A n
2

� �
< A n

2 þ 1
� �

, similar to 1), we can determine that the maximum value of

the function is in the interval n
2 þ 1, n
� �

, so we can discard the interval 1, n
2

� �
;

3. The case A n
2

� � ¼ A n
2 þ 1
� �

is impossible.

In either case, we have reduced the search interval from [1, n] by half. In the new
search interval, which could be 1, n

2

� �
, or n

2 þ 1, n
� �

, the function f still satisfies the
property of single-peak condition. We can recursively call this algorithm to continue
searching for the maximum point of the function.

The algorithm we described above can be formalized into the algorithm shown in
Fig. 4.7.

Let’s take a look at the efficiency of this algorithm. We use T(n) to denote the
number of queries required by an algorithm on an input of length n. In the first step of
the algorithm, we need to query twice: the function values f n

2

� 	� �
, f n

2

� 	þ 1
� �

. In the
second step of the algorithm, we reduce the problem with the original input size n to
an input size of n

2

� 	
or (n� n

2

� 	
) subproblem. The setting of this subproblem is

exactly the same as the original problem, except that the scale is smaller than the
original problem. Therefore, if the algorithm is called recursively, the required
number of queries is T n

2

� 	� �
or T n� n

2

� 	� �
. Combining these two steps, we can get:

Input: A[1], A[2],…, A[n] which satisfies single-peak property
Output: the maximum value in the array A[i], i

begin=1; end=n;

Algorithm 1: find the maximum based on equal division

If (A[mid]<A[mid+1]) then
begin=mid+1;

Else
end=mid;

Return A[end], end
Else

Return A[begin], begin

If (A[begin]<A[end]) then

While (end-begin>1) do
mid = (begin+end)/2;

Fig. 4.7 The single-factor optimization (binary search)

144 4 Algorithmic Thinking

T nð Þ � max T
n
2

j k� �
,T n� n

2

j k� �n o
þ 2 � T

nþ 1
2

j k� �
þ 2

In addition, we know that the initial value T (1) ¼ 1. Thus, we have

T nð Þ � 2 log nd e þ 1

In the above algorithm, we make two queries each time and reduce the length of
the interval by half. Is it possible to further improve this algorithm? It seems to be the
most economical to shrink the interval by half each time, because if we divide the
interval into two parts, the length of one part will always be at least the half. Can we
reduce the number of queries in each round? This is possible, if we can reuse the
query results which we have obtained before.

Below we give another more efficient algorithm for the above problem. The idea
of Algorithm 2 is basically the same as that of Algorithm 1. The key difference lies in
the selection of cut points. In our algorithm and analysis, the
constant

ffiffiffi
5

p � 1
� �

=2 � 0:618 which is actually the golden section ratio is fre-
quently used. For the convenience of writing, we set α ¼ ffiffiffi

5
p � 1
� �

=2. The block
diagram of Algorithm 2 is shown in Fig. 4.8:

Now, let us analyze the performance of Algorithm 2. In order to simplify the
analysis, we ignore all rounding symbols. By querying x1 ¼ (1 � α) n and x2 ¼ αn,
we reduce the problem to a subproblem A[1, . . ., αn] or A[(1 � α) n, . . ., n]. In either
case, the scale of the new subproblem is αn. It seems that it is worse than binary
search. However, notice that for the new subproblem, one of the two points we need
to query is already known! Taking A[1, . . ., αn] as an example, according to the steps
of the algorithm, the two points we need to query are y1 ¼ α(1 � α)n and y2 ¼ α2n.
Note that α is the golden section ratio which is the solution of the equation
x2 + x � 1 ¼ 0. After simple calculation, we have y2 ¼ x1, which means that we
do not need to query the value of point y2 because we already know the value of

Algorithm 2: find the maximum based on the golden section method
Input: [1], [2],⋯ , []
Output: the maximum value in the array
Steps: ← 1， ←
While − > 1 do1 ← ⌊ ⋅ + (1 −) ⋅ ⌋, 2 ← ⌊(1 −) ⋅ + ⋅ ⌋

If [1] ≤ [2] then← 1
Else ← 2

If [] < [] then
Return [],

Else
Return [],

Fig. 4.8 The single-factor optimization (golden section method)

4.2 Divide-and-Conquer Algorithms 145

point x1. Similarly, for the subproblem A[(1� α) n, . . ., n], we can know that the first
branch point required by the algorithm is exactly x2. In either case, we only need to
query ONE new point, so we get the following recursion:

T nð Þ ¼ T αnð Þ þ 1,

T 1ð Þ ¼ 1:

(

By solving this recursion, we have

T nð Þ ¼ log 1þαð Þnþ 1

Comparing the two algorithms, we can see that the performance of Algorithm 2 is
better than that of Algorithm 1 (because 2 log 2n ¼ log ffiffi

2
p n > log 1þαð Þn). To solve

the same problem, when we use different methods to design our algorithm, its
performance is different. We always hope to be able to design the best algorithm,
that is, the most efficient algorithm to solve the problem.

In single-factor optimization, our intuition is to reduce the query number in each
round. We come up with the brilliant idea that we can reuse the query in the previous
round. In order to use such an idea, we modify the division method by using golden
section. This tells us: the division method and the combination method are
interdependent, and no division method is universal.

There is a final remark of the single-factor optimization problem. In all of our
discussion, our objection is to minimize the number of oracle queries. Since in most
real scenarios, one oracle query is much more expensive than the comparison
operations or assignment operations in the algorithm, it is natural to ignore the
cost of the other operations. But, if the running time of one oracle query is the
same as that of one comparison operation or one assignment operation, is algorithm
2 still better than algorithm 1?

4.2.4 Integer Multiplication

In this section, we will discuss the integer multiplication problem. We will show if
we apply divide-and-conquer method mechanically, we will not enhance perfor-
mance. Thus, we need to think about a cleverer way to solve the problem.

Firstly, let us describe the integer multiplication problem:

The Integer Multiplication Problem
• Input: X ¼ xnxn � 1. . .x1, Y ¼ ynyn � 1. . .y1.
• Output: Z ¼ X � Y ¼ XY

146 4 Algorithmic Thinking

Calculating the multiplication of two numbers is a problem we often encounter in
our daily life. We give an example to show how to calculate the multiplication of two
3-digit numbers 123 � 321 by hand.

For two n-digit numbers (imagine that n is very large, for example, n ¼ 1012), if
we use a similar method to calculate the multiplication, we need n2 multiplications
and about n2 additions of 1-digit operation. Let us see if we can reduce the total
number of calculations by adopting the divide-and-conquer approach.

Write the input X and Y as follows:

X ¼ X1 � 10n=2 þ X2,Y ¼ Y1 � 10n=2 þ Y2,

where the length of X1, X2, Y1, Y2 is n/2. What we need to calculate is:

Z ¼ XY ¼ X1Y1 � 10n þ X1Y2 þ X2Y1ð Þ � 10n=2 þ X2Y2:

The naïve idea is to call the algorithm recursively to calculate X1Y1, X1Y2, X2Y1,
X2Y2. Based on this idea, we need to multiply two (n/2)-digits numbers 4 times in
total, and also need up to 3 times n-digits addition, so we get

T nð Þ ¼ 4T n=2ð Þ þ 3n,

T 1ð Þ ¼ 1:

(

It is easy to solve the recursion and obtain T(n) ¼ O(n2), where there is no
substantial improvement over the previous natural algorithm.

Now let us change the way of thinking. The idea is: what we need is
X1Y2 + X2Y1 instead of X1Y2 and X2Y1.

Notice that X1Y1 + X1Y2 + X2Y1 + X2Y2 ¼ (X1 + X2)(Y1 + Y2). So, by calculating
X1Y1, X2Y2, (X1 + X2)(Y1 + Y2), and then use

X1Y2 þ X2Y1 ¼ X1 þ X2ð Þ Y1 þ Y2ð Þ � X1Y1 � X2Y2,

4.2 Divide-and-Conquer Algorithms 147

we can obtain X1Y2 + X2Y1. By this method, we need to multiply two (n/2)-digits
numbers 3 times in total, and also need n-digits addition 6 times: X1 + X2, Y1 + Y2,
(X1 + X2)(Y1 + Y2) 2 X1Y1 2 X2Y2, and

Z ¼ X1Y1 � 10n þ X1Y2 þ X2Y1ð Þ � 10n=2 þ X2Y2:

Thus, we have

T nð Þ ¼ 3T n=2ð Þ þ 6n,

T 1ð Þ ¼ 1:

(

By solving this recursion, we have TðnÞ ¼ cnlog23 þ OðnÞ � n1:59 , which is a
great improvement compared to the naïve algorithm with time complexity O(n2).
This example tells us when designing divide-and-conquer algorithms, it is important
to make the number of subproblems of recursive calls as small as possible.

4.2.5 Matrix Multiplication

Matrix multiplication is a natural extension of integer multiplication. We want to
further illustrate the idea on how to minimize the number of subproblems.

The Matrix Multiplication Problem
• Input: two n � n matrices A ¼ [ai, j], B ¼ [bi, j].
• Output: C ¼ AB.

According to the definition of matrix multiplication, we know

ci,j ¼ ai,1b1,j þ ai,2b2,j þ . . .þ ai,nbn,j:

If we use the natural method to compute each ci, j directly, we need O(n3)
multiplications and O(n3) additions in total. Let use divide A, B and C into four
(n/2 � n/2) sub-matrices:

A ¼ A1,1 A1,2

A2,1 A2,2

� �
, B ¼ B1,1 B1,2

B2,1 B2,2

� �
, C ¼ C1,1 C1,2

C2,1 C2,2

� �
:

Then, we have

C1,1 ¼ A1,1B1,1 þ A1,2B2,1

C1,2 ¼ A1,1B1,2 þ A1,2B2,2

148 4 Algorithmic Thinking

C2,1 ¼ A2,1B1,1 þ A2,2B2,1

C2,2 ¼ A2,1B1,2 þ A2,2B2,2

If we directly call the subroutine to compute C1, 1, C1, 2, C2, 1, C2, 2, we need
8 calls of the subproblem of the multiplication of n/2 � n/2 submatrices. In addition,
we need 4 times addition of n/2 � n/2 matrices. Thus, the recursion is

T nð Þ ¼ 8T
n
2

� �
þ 4

n
2

� �2

The final complexity obtained by solving this recursion is still O(n3). Applying
the previous ideas about n-digit multiplication, we need to reduce the number of
subroutine calls through appropriate addition and subtraction. How can we
achieve this? It is more difficult than the integer multiplication problem. The
following solution is proposed by Volker Strassen (1936-).

Example 4.4. Strassen’s Algorithm for Matrix Multiplication
Define the following 7 matrices:

M1 ¼ A1,2 � A2,2ð Þ B2,1 þ B2,2ð Þ,
M2 ¼ A1,1 þ A2,2ð Þ B1,1 þ B2,2ð Þ,
M3 ¼ A1,1 � A2,1ð Þ B1,1 þ B1,2ð Þ,

M4 ¼ A1,1 þ A1,2ð ÞB2,2,

M5 ¼ A1,1 B1,2 � B2,2ð Þ,
M6 ¼ A2,2 B2,1 � B1,1ð Þ,
M7 ¼ A2,1 þ A2,2ð ÞB1,1:

We can make an observation: the matrices we need to compute, e.g., C1, 1, C1, 2,
C2, 1, C2, 2, can be calculated by using M1, . . ., M7 and some addition or subtraction
operations. The detailed method is as follows:

C1,1 ¼ M1 þM2 �M4 þM6,

C1,2 ¼ M4 þM5,

C2,1 ¼ M6 þM7,

C2,2 ¼ M2 �M3 þM5 �M7:

Let’s take a look at the performance of Strassen’s algorithm. First of all,
Strassen’s algorithm needs to call a total of seven sub-matrix multiplications. In
addition, the algorithm also needs to add n/2 � n/2 matrices several times, so we
have the following recursion:

4.2 Divide-and-Conquer Algorithms 149

T nð Þ ¼ 7T
n
2

� �
þ O n2

� �
:

Here we do not accurately calculate the total number of times required for the
addition or subtraction. Instead, we use the O(�) notation to hide the constant. In fact,
this constant does not affect the magnitude of T(n). No matter what the constant is,
the solution is T(n) ¼ O(nlog7) � O(n2.81).

☶

The algorithm proposed by Strassen in 1969 is the first algorithm about matrix
multiplication that can beat the conventional O(n3) algorithm. Since then, the upper
bound of the complexity of matrix multiplication has been continuously improved:
the algorithm complexity proposed by Pan in 1978 is O(n2.796), by Bini et al. in 1979
is O(n2.78), by Schönhage in 1981 is O(n2.548), by Romani in 1982 is O(n2.517), by
Strassen in 1986 is O(n2.479). At present, the best matrix multiplication algorithm
was proposed by Coppersmith and Winograd in 1987. The complexity of the
algorithm was O(n2.376) when originally proposed. Recently, the analysis of the
original algorithm has been continuously improved by Stothers, Williams, Le Gall
and others. The algorithm complexity is reduced to O(n2.3729). Whether there is a
matrix multiplication algorithm close to O(n2) complexity is an important unsolved
problem in the field of algorithms.

4.2.6 Summarization

In this section, we discuss many examples with the help of divide-and-conquer
methodology. In general, divide-and-conquer comes from the idea that when you
want to solve a complicated problem, try to transfer it into some easier problem.
There are two features of the problems which can be solved with the help of divide-
and-conquer method. Firstly, the problem with extremely small size is straightfor-
ward to solve, for example, the sort problem with only two elements. This will be
served as the basis of the recursive process. Secondly, we can solve the general
problem with the help of the problem with smaller size. This part is the art in the
divide-and-conquer method. There is no universal way of construction for every
scenario, and we need to observe the specialty for each problem ourselves. However,
there are two things which are usually important in the design of divide-and-conquer
algorithms.

Firstly, it is usually better to use smaller number of subproblems to solve the
original problem. In many examples, such as integer multiplication and matrix
multiplication, we are trying to reduce the number of subproblems and we show
with smaller number of subproblems, we dramatically improve the performance of
the algorithms, even if we slightly increase the time complexity for each round. But
please do not go to the other extreme. For example, in the integer multiplication
problem, the natural idea gives us T(n) ¼ 4T(n/2) + 3n. If we modify it into T

150 4 Algorithmic Thinking

(n) ¼ 3T(n/2) + 6n as illustrated in Sect. 4.2.4, it improves the performance. But if
we modify it into T(n)¼ 3T(n/2) +O(n2), the performance will be T(n)¼O(n2). If T
(n) ¼ 3T(n/2) + O(n3), the performance will be even worse than the natural
algorithm. In other words, in the design of divide-and-conquer algorithms, we
need to balance all parts.

Secondly, it is usually better to partition the original problem into subproblems.
For example, in the sort algorithm, we partition the whole unsorted set into two
disjoint subsets and recursively sort them. It makes no sense if the subproblems have
overlapping elements. Partition, in some sense, can make the size of subproblems as
small as possible. Thus, it is useful for better performance. But in the example of
single factor optimization, we also see that this is not always the case. In such an
example, although two possible subproblems [1, . . ., αn] and [(1 � α)n, n] are
overlapping, it is faster than the natural halving method. In the integer multiplication
and the matrix multiplication problems, it is even hard to distinguish which idea is a
partition. When dividing the problem into subproblems, the partition method is
usually a good start point since it makes the size of subproblems small, but the
size of subproblems is not the only factor in the divide-and-conquer method, and we
need to balance all parts. On the other hand, if there are too many overlaps between
different subproblems, some other methods may be more powerful than divide-and-
conquer. See Sect. 4.3.1 for an example.

4.3 Other Examples of Interesting Algorithms

In the previous section, we focused on the algorithms based on the divide-and-
conquer method. We also learn how to analyze the algorithm complexity through
recursion expression. In this section we will see some other examples of algorithms.
The first example is using dynamic programming to compute Fibonacci number. We
will see how this method can eliminate duplicated computation. The second example
is the stable matching problem, which uses a kind of “greedy” algorithm method,
different from the divide-and-conquer paradigm. While the correctness of a divide-
and-conquer algorithm is usually straightforward, the correctness of a greedy solu-
tion needs to be proved. The final example is the quicksort algorithm for the sorting
problem. The quicksort algorithm is not a deterministic algorithm, that is, the
algorithm will toss some coins to decide the next step during the process of running.
We will see how to analyze the complexity of such algorithms.

4.3.1 Dynamic Programming

A divide-and-conquer algorithm solves a problem by dividing the problem into
independent subproblems, and then combining their solutions. The key character
here is that the subproblems are independent, meaning that they usually do not

4.3 Other Examples of Interesting Algorithms 151

overlap. That is, the subproblems do not share subproblems and do not solve the
shared subproblems multiple times.

What if the subproblems do overlap? An algorithm paradigm called dynamic
programming specifically addresses such concerns. A dynamic programming algo-
rithm divides the problem into potentially overlapping subproblems and combines
their solutions. The key character is that the solution to every shared subproblem is
memorized and reused, avoiding computing its solution multiple times.

There are two approaches to implementing memorization in dynamic program-
ming algorithms, the top-down approach and the bottom-up approach. We analyze
the example of computing a small Fibonacci number F(5) to see how the two
approaches in dynamic programming work, as shown in Example 4.5.

Example 4.5. Eliminate Redundant Computation by Dynamic Programing
We analyze the behaviors of two dynamic programming algorithms computing a
small Fibonacci number F(5), against the recursive program fib-5.go. The details of
the fib-5.go program and the fib.dp-5.go program using the top-down approach are
shown in Fig. 4.9. Some diagnostic print statements are added to print out interme-
diate results, to reveal the behaviors of these programs.

The recursive program fib-5.go does a lot of redundant, unnecessary computa-
tions. This becomes immediately clear when we look at Fig. 4.10, which shows the
tree of recursive calls to fibonacci(n), denoted as F(5), (F4), F(3), F(2), F(1), and F
(0). The circled numbers,①,②, . . .,⑮, show the order as to how the calls are made.
The program calls fibonacci(n) 15 times. It first calls F(5), then F(4), and finally F(0).
Note that F(0) is called 3 times, F(1) 5 times, F(2) 3 times, F(3) 2 times. Altogether,
9 unnecessary computations are performed.

The fib.dp-5.go program uses the top-down approach of dynamic programming
to compute F(5). It is similar to the recursive program fib-5.go, but results of F(n) are
stored in a 6-element array mem. Every element mem[i] is initialized to -1, to denote
that this element has not been computed yet. When the program calls fibonacci(n),
the code first checks if mem[n] is -1. If it is not, the function call immediately returns
with the already computed value mem[n], without going further to do unnecessary
computation.

The diagnostic printout should show that when running the fib.dp-5.go program,
fibonacci(n) is called only 9 times. The calling order is F(5), (F4), F(3), F(2), F(1), F
(0), F(1), F(2), F(3). Furthermore, the last three calls F(1), F(2), F(3) are returned
immediately, without doing unnecessary computation. Thus, the fib.dp-5.go pro-
gram only performs 6 necessary computations F(5), (F4), F(3), F(2), F(1), F(0).

To compute Fibonacci number F(n), it is easy to find that we need to call F(i) for
all i < n. The bottom-up approach takes advantage of this fact and prepares the small
Fibonacci number before a call. It starts at the smallest subproblems F(0) and F(1),
memorize their solutions, and combines their solutions into the solution of the
subproblem next level up, e.g., F(2)¼F(1)+F(0). This iterative process continues,
to obtain F(3)¼F(2)+F(1), F(4)¼F(3)+F(2), until the topmost solution F(5) is
obtained. When we compute some Fibonacci number, for example F(3), we do not
need to worry whether the smaller numbers F(2) and F(1) have been computed or

152 4 Algorithmic Thinking

not. Thus, we do not need -1 to represent unfinished work, as what we did in fib.dp-5.
go. The bottom-up program fib.dp.bu.go is shown below. In this code, we do not

package main
import "fmt"
func main() {

fmt.Println("F(5)=", fibonacci(5))
}
func fibonacci(n int) int {

fmt.Println("F(",n,")")
if n == 0 || n == 1 {

return n
}
return fibonacci(n-1)+fibonacci(n-2)

}

package main
import "fmt"
var mem [6]int
func main() {

for i := 0; i < 6; i++ { mem[i] = -1 }
fmt.Println("F(5)=", fibonacci(5))

}
func fibonacci(n int) int {

fmt.Println("F(",n,")")
if mem[n] != -1 {

fmt.Println("Immediate Return: F(",n,")=",mem[n])
return mem[n]

}
if n == 0 || n == 1 {

mem[n] = n
fmt.Println("Return: F(",n,")=",mem[n])
return mem[n]

}

fmt.Println("Return: F(",n,")=",mem[n])
return mem[n]

}

(a)

(b)

mem[n] = fibonacci(n-1) + fibonacci(n-2)

Fig. 4.9 Two programs to compute Fibonacci number F(5). (a) Recursive program fib-5.go. (b)
Dynamic programming program fib.dp-5.go

4.3 Other Examples of Interesting Algorithms 153

even store all numbers we compute, since we only need F(n-1) and F(n-2) to
computer F(n).

package main // program fib.dp.bu.go
import "fmt"
func main() {

fmt.Println("F(5)=", fibonacci(5))
}
func fibonacci(n int) int {

a :=0
b :=1
for i :=1; i < n+1; i++ {

a = a + b
a, b = b, a

}
return a

}

The bottom-up approach often results in a simpler, iterative program. However,
students may find either the top-down or the bottom-up approach more intuitive and
easier to use. For instance, for the problem of finding a shortest path in a graph, many
students prefer the top-down approach.

☶

4.3.2 (***) The Greedy Strategy

This example comes from economics. The 2012 Nobel Prize in Economics was
awarded to mathematical economists Alvin Roth and Lloyd Shapley in recognition
of their outstanding contributions to “the theory of stable distribution and its market

F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(2) F(1) F(1) F(0) F(1) F(0)

F(1) F(0)

Fig. 4.10 The sequence of
fibonacci(n) calls, where ①,
②, . . . denote the order

154 4 Algorithmic Thinking

design practice”. The stable matching problem is one of the starting point of this
research area.

Consider the following scenario. Suppose n boys M1, M2, . . ., Mn and n girls W1,
W2, . . ., Wn participate in a dance together, and each of them hopes to find a suitable
partner to dance. For each girlWi, according to her own criteria, there is a ranking for
the n boys. The boy in the higher rank indicates that Wi thinks he is more suitable
than the boy in the lower rank. Similarly, for each boyMj, there will also be a ranking
for all n girls. Suppose that at the beginning of the dance, they arbitrarily formed
n pairs of dance partners and began to dance the first dance. In this process, if there
exists a pair of boys Mi and girls Wj, they are not each other ’s partners, but each of
them feels that the other one is better than their current partner, then when the next
song starts, they will choose the other as their partner instead of the current partner.
We call such a pair (girl, boy) an unstable pair. If there is an unstable pair in the
matching, we call such a matching unstable, otherwise we call such a matching
stable. The question now is whether these n girls and these n boys can form n pairs of
stable partners together.

This problem is called the stable matching problem. Below we give a more
rigorous mathematical description of this problem:

We can use two n � n matrices to represent our input. Matrix W represents the
preference matrix for girls. Each row is a permutation of {1, 2, . . ., n}, and the i-th
row means that the ranking of boys for the girl Wi. Matrix M represents the
preference matrix of boys, and the i-th row represents the ranking of Mi for all
girls. An example is given in the table in Fig. 4.11.

The stable matching problem:
Is there a matching between boys and girls
Wi1 ,Mj1

� �
, Wi2 ,Mj2

� �
, . . ., Win ,Mjn

� �
 �
, where {i1, . . ., in} and {j1, . . ., jn} are

two permutations of {1, 2, . . ., n}, satisfying that there is no pair Wik ,Mjℓ

� �
, where

k 6¼ ℓ, such that Mjℓ ranks higher than Mjk in the order of Wik, and Wik ranks higher
than Wiℓ in the order of Mjℓ .

For example, in the example in Fig. 4.12, {(W1,M1), (W2,M2), (W3,M3)} is an
unstable matching. Let us examine girl W1 and boy M2. W1’s current partner is M1,
while in the ranking of W1, M2 ranks higher than M1. At the same time, for the boy
M2's current partner W2, W1 is also ranked higher than W2. So (W1, M2) forms an
unstable pair. It can be verified that the matching {(W1,M2), (W2,M1), (W3,M3)} is
a stable matching. Note that for unstable boy and girl pairs, both parties must feel
that the other is better. If only one party feels that the other is better, this does not

W1 M2 M1 M3 M1 W2 W1 W3W2 M1 M2 M3 M2 W1 W2 W3W3 M2 M3 M1 M3 W3 W1 W2
Fig. 4.11 Matrix W and matrix M in an example of the stable matching problem

4.3 Other Examples of Interesting Algorithms 155

constitute an unstable pair. For example, consider the pairM2 andW3 here. Although
according to the order of W3,M2 is better than its current partner for M3, in the view
ofM2, his partnerW2 is better thanW3. Thus he will not agree to change the partner.

This problem has important applications in economics. Mathematical economists
Gale and Shapley first proposed and studied this problem. They proved that regard-
less of the preference ranking of each boy and girl, a stable matching always exists.
In fact, they have given an algorithm to find such a matching. This algorithm is
called the Gale-Shapley algorithm today, described as follows.

The algorithm is divided into several rounds. In the first round, each boy selects
the girl who has the highest ranking in his preference order and invites the girl to
dance. For any girl W who receives the invitation, choose the best boy among the
inviters and become his “temporary” dance partner, and for all other inviters, refuse
the invitation. We change the status ofW to be “not free”. As long as there are “free”
girls, the algorithm performs the following steps:

In the new round, for each boy who is unmatched in the previous round, he will
select the highest ranked girl who has not been invited by him according to his
preference order and send her an invitation, regardless of whether this girl currently
has a “temporary” dance partner. On the girl’s side, if some girl has “temporary”
dance partner, she pretends to receive the invitation from her partner in this round.
Then, for each girl who receives at least one invitation in this round, choose the best
boy among the inviters and become his “temporary” dance partner, and for all other
inviters, refuse the invitation. We change the status of this girl to be “not free”. The
algorithm re-examines whether there are “free” girls, and start a new round if there
are any “free” girls.

We give an example with 5 boys and 5 girls to illustrate how Gale-Shapley
algorithm works. In the example shown in Fig. 4.13, boys are represented by
numbers, and girls are represented by capital letters. On the left side of the figure,
the letter string next to the number indicates the ranking of the boy’s preference for
all girls. On the right side of the figure, a string of numbers next to the letter indicates
the ranking of girl’s preferences. The rankings on both sides are arranged from most
like to least like. For instance, the entry 1:CBEAD indicates that Boy 1 likes C the
most and D the least.

M1:W2W1W3
W2:M1M2M3
W1:M2M1M3

M2:W1W2W3
M3:W3W1W2 W3:M2M3M1

Fig. 4.12 Example of
stable matching and
unstable matching

156 4 Algorithmic Thinking

In the first round, each boy will propose to the girl he likes most. Girl C will
receive invitation from boy 1, and she becomes his “temporary” dance partner. Girl
A will receive invitation from boy 2,4,5 and she will become the “temporary” dance
partner of boy 5 according to her preference. Girl D will receive invitation from boy
3, and she becomes his “temporary” dance partner. In the end of this end, girl B and
E are still free while boy 2 and 4 do not have dance partner.

In the second round, boy 2 will propose to girl B and boy 4 will propose to girl
C. For girl B, she only receives the invitation from boy 2, thus she becomes his
“temporary” dance partner. But for girl C, she is currently the partner of boy 1 and
receives a new invitation from boy 4. She will compare these two boys according to
her preference, and becomes the partner of boy 4. In the end of this round, boy
1 becomes unmatched.

In the third round, boy 1 will propose to girl B. But girl B thinks her current
partner boy 2 is better than boy 1, so she will refuse the invitation.

Fig. 4.13 Example of the
Gale-Shapley algorithm

4.3 Other Examples of Interesting Algorithms 157

In the fourth round, boy 1 will propose to girl E. Since girl E is free, she will
accept the invitation. Now, all girls become “not free”, thus, the algorithm
terminates.

The reader can verify that {(1, E), (2, B), (3, D), (4, C), (5, A)} is indeed a stable
matching.

Now, let us firstly discuss the correctness of Gale-Shapley algorithm. It is not
always obvious whether an algorithm correctly solves the problem we require,
especially for some complex algorithms. However, it is quite important to strictly
prove the correctness of any algorithm, otherwise, there is no guarantee for the
output. The previous algorithms based on divide-and-conquer method are relatively
simple, and the correctness of the algorithm is self-evident, so we omitted the proof
of the correctness. But for the Gale-Shapley algorithm, the correctness is not
obvious. It is even not obvious why the algorithm will eventually terminate. From
a mathematical point of view, “stable matching must exist” is not a clearly
established proposition.

Before proving the correctness of Gale-Shapley algorithm, we first observe some
simple properties of this algorithm:

1. Every boy invites a girl at most once;
2. Every girl keeps the status “not free” since she was first invited;
3. Every girl has at most one dance partner during the process of the algorithm;
4. Every boy has at most one dance partner during the process of the algorithm;
5. Every unmatched boy will continue to invite until it matches or he has invited all

girls;

The following lemma shows the correctness of the Gale-Shapley algorithm

158 4 Algorithmic Thinking

Lemma 1: Gale-Shapley algorithm stops after O(n2) rounds, and after it stops, it
will output a matching.

Proof: According to property 1, we know that each boy invites n times at most, so
the total number of invitations is at most n2. In each round, there are at least one
invitation. Thus, the algorithm will terminate after at most n2 rounds

When the algorithm stops, if all girls are “not free”, according to property 3 and
4, all girls and boys are matched. Thus it forms a matching.

It seems that we have already finished the proof. However, there are some
subtlety in the algorithm. In the algorithm, in each round, we say “for each
unmatched boy, he will select the highest ranked girl who has not been invited by
him and send the invitation”. But, does it possible that for some unmatched boy, he
has already invited all girls? We will show this case is impossible.

We show it by contradiction. Suppose for some boy M in the beginning of some
round T, he is unmatched, but he has already invited all girls. According to property
2, after a girl receives her first invitation, her status will always be "not free". Since
this boy M has invited all girls, the status of all girls should be "not free" in the
beginning of round T. Thus, the algorithm should stop in the previous round.
Contradiction. We finish the proof. ∎

Lemma 2: The output by the Gale-Shapley algorithm is a stable matching.

Proof: We will still prove it by contradiction. Suppose the final matching output by
the Gale-Shapley algorithm is {(W1,M1), (W2,M2), . . ., (Wn,Mn)}. Without loss of
generality, let us assume that the unstable pair in the final matching is (W1,M2). This
pair is unstable means W1 prefers M2 to M1, and M2 prefers W1 to W2 (see figure
below).

We consider two cases:
Case 1: M2 has never invited W1. Since M2 and W2 are finally together, it means

thatM2 invitesW2 in some round. On the other hand, since M2 prefersW1 toW2,M2

must invite W1 before he invites W2. Contradiction.
Case 2: M2 has invited W1 in some round. Since M1 and W1 are finally together

and M2 has invited W1 in some round, it means W1 refuses the invitation of M2 in
some round due to she receives invitation from some better boy. For every girl, she
will refuse the invitation or change partner only if some better boy sends her
invitation, so it means in the girls’ view, their partners becomes better and better.
Since the final partner of W1 is M1, girl W1 prefers M1 to M2. Contradiction.

Therefore, in each case, we will reach contradiction. We finish the proof. ∎

Question: in your opinion, is this algorithm beneficial for boys or girls?

4.3 Other Examples of Interesting Algorithms 159

4.3.3 The Randomization Strategy

In the previous section, we have already introduced the sorting problem and
discussed three sorting algorithms: the bubble sort algorithm, the insertion sort
algorithm and the merge sort algorithm. In addition to these sorting algorithms,
there are many different sorting algorithms. In this section, we will introduce a
sorting algorithm commonly used in our computers: the quicksort algorithm. The
difference is that we will use randomized process in the algorithm, and we will show
the power of randomization.

The core idea of the quicksort algorithm is similar to the merge sort algorithm:
call itself recursively to sort the subproblems. In the merge sort algorithm, we firstly
solve the subproblems and then try to merge the results into a whole ordered set. But
in the quicksort algorithm, we will carefully divide the original problem into sub-
problems, and after solving the subproblem, the merge process becomes trivial. How
can we achieve this? Suppose the original array is A. The key idea is to divide A into
two subsets A1 and A2 where all elements in A1 are smaller than all elements in A2,
then the merge process will be trivial.

Fig. 4.14 An example run of the quicksort algorithm

160 4 Algorithmic Thinking

QuickSort(A, p, r)

If p < r

1. q ¼ Partition(A, p, r)
2. QuickSort(A, p, q-1)
3. QuickSort(A, q+1, r)

The above is the pseudocode of the quicksort algorithm, which sorts the p-th element
to the r-th element in the array A. It needs to call a Partition subroutine.

The Partition (A, p, r) subroutine uniformly and randomly extracts an element
x from the array A[p,. . ., r], and then adjusts the array A[p,. . . r] so that the numbers
larger than x are arranged on the right side of x, and the numbers smaller than x are
arranged on the left side of x. Note that the numbers on the right side are not sorted,
and the same goes for the left side. Partition(A, p, r) finally returns the position q of
x in the array.

After the operation of the Partition() subroutine, we know that any number on the
left side of x must be smaller than the one on the right side, so we only need to sort
the elements A[p,. . ., q-1] on the left side of x and the elements A[q + 1, . . ., r] on the
right side of x, separately. We can do so by recursively call QuickSort() for the two
subproblems.

Figure 4.14 shows an example of the specific implementation of the quicksort
algorithm. The elements which are randomly selected each time are marked in red in
the figure.

Part of the Go code to implement the above quicksort algorithm is shown below,
for students who want more details. Note that initially, the input data is stored in a
slice variable A.

func quicksort(A []int) {
if len(A) < 2 { return }
lowerA, upperA := partition(A)
quicksort(lowerA)
quicksort(upperA)

}
func partition(A []int) ([]int, []int) { // return two slices as

output
pivotIndex := rand.Intn(len(A)) // randomly select a pivot
pivotValue := A[pivotIndex]
lower := 0
A[pivotIndex], A[len(A)-1] = A[len(A)-1], A[pivotIndex]
for i:= 0; i<len(A); i++ {

if (A[i]<pivotValue) {
A[lower], A[i] = A[i], A[lower]
lower++

}
}
A[lower], A[len(A)-1] = A[len(A)-1], A[lower]

4.3 Other Examples of Interesting Algorithms 161

return A[0:lower], A[lower+1:len(A)]
}

Finally, let us analyze the performance of the quicksort algorithm. Because the
Partition() subroutine called in the quicksort algorithm selects the elements ran-
domly, the running time of the quicksort algorithm is not deterministic but is a
random variable. We use T(n) to represent the time required by the quicksort
algorithm to sort n unordered numbers, thus T(n) is a random variable.

At best, if each time the Partition() subroutine happens to divide the array into two
equal parts, the total sorting time will be very fast. We use Tbest(n) to represent the
time of the algorithm in this lucky case. Then we have

Tbest nð Þ ¼ 2Tbest n
2

� �
þ n:

By solving the recursion, we have Tbest(n) ¼ O(n log n).
However, if the length of each part is very uneven, then the algorithm will be very

slow. For example, in the extreme cases, the algorithm will always choose the largest
elements each time. In this case, one of the parts after the partition is the empty set,
while the other part contains n� 1 element. We use Tworst(n) to represent the time of
the algorithm in this unlucky case. Then we have

Tworst nð Þ ¼ Tworst n� 1ð Þ þ n:

By solving the recursion, we have Tworst(n) ¼ O(n2).
So which one is better to represent the performance of the quicksort algorithm?

Usually, we use neither best case analysis nor worst case analysis. Instead, our goal
is to analyze the average case running time, i.e., the expectation of T(n).

Since we select an element uniformly and randomly every time, the probability of
selecting any element is 1/n. Assuming that the element x selected by the algorithm is
ranked i among all the elements of the array, then there are (i � 1) elements smaller
than x where these elements will be ranked on the left of x and the time required to
recursively call the QuickSort() algorithm is T(i� 1). Similarly, (n� i) elements are
larger than x and will be sorted to the right of x, and the time required to recursively
call QuickSort() algorithm is T(n� i). Therefore, the expectation of total sorting time
T(n) is

 T nð Þð Þ ¼ 1
n

Xn

i¼1
 T i� 1ð Þ þ T n� ið Þ þ n� 1ð Þ:

The last item (n� 1) is due to the need to compare xwith all other elements. After
simplifying the above formula, we can get

162 4 Algorithmic Thinking

 T nð Þð Þ � 2
n

Xn�1

i¼1
 T ið Þð Þ þ n� 1ð Þ:

By solving the recursion, we have  T nð Þð Þ ¼ O n log nð Þ . In other words, the
expected running time of the quicksort algorithm is O(n log n), which is significantly
faster than the O(n2) time required by the bubble sort algorithm and insertion sort
algorithm in the previous section.

4.3.4 (***) Search Algorithms

When computer science is used to solve a real-world problem, it often happens that
the given problem has different nuances, which can be utilized to design different
algorithms. As a concrete example, we discuss the search problem by contrasting
three algorithms to look up an item in a dictionary. The three algorithms have
different time complexities of O(n), O(logn), and O(1).

A dictionary is a set of n records, where each record consists of a key-value pair
<key, value>. A search operation lookup(key) returns the value of the key-value pair
with a matching key.

A dictionary of students of computer science, who are actually pioneers of
computer science quoted in the book, is shown in Table 4.5. There are n¼15 records,
each denoting a pioneer. The key is the full name of a student, and the value is the
country of birth of the same student, both of which are strings.

Table 4.5 The dictionary
StudentsMap for linear search

Key Value

Berners-Lee, Tim UK

Wu, Wenjun China

Godel, Kurt Austria

Turing, Alan UK

Knuth, Donald USA

Leibniz, Gottfried Germany

Von Neumann, John Hungary

Amdahl, Gene USA

Yao, Andrew China

Moore, Gordon USA

Yang, Xiong China

Karp, Richard USA

Boole, George UK

Makimoto, Tsugio Japan

Torvalds, Linus Finland

4.3 Other Examples of Interesting Algorithms 163

4.3.4.1 Linear Search in O(n) Time

The first algorithm is linear search, which searches the dictionary record-by-record
and is implemented by the following linear.search.go program. A data structure
called map is used to represent a dictionary, where the keyword range says that the
for loop iterates record-by-record for studentsMap. Thus, lookup(“Knuth, Donald”)
needs 5 iterations and returns “USA”, and lookup(“Babayan, Boris”) needs 15 iter-
ations and returns “not found”.

package main // The linear.search.go program
import "fmt"
var studentsMap = map[string]string{

"Berners-Lee, Tim": "UK", "Wu, Wenjun": "China",
"Godel, Kurt": "Austria", "Turing, Alan": "UK",
"Knuth, Donald": "USA", "Leibniz, Gottfried": "Germany",
"Von Neumann, John": "Hungary", "Amdahl, Gene": "USA",
"Yao, Andrew": "China", "Moore, Gordon": "USA",
"Yang, Xiong": "China", "Karp, Richard": "USA",
"Boole, George": "UK", "Makimoto, Tsugio": "Japan",
"Torvalds, Linus": "Finland",

}
func lookup(studentName string) string {

for key, value := range studentsMap {
if studentName == key { return value }

}
return "not found"

}
func main() {

s, t := "Knuth, Donald", "Babayan, Boris"
fmt.Println(s, "is from", lookup(s))

Table 4.6 Initial configura-
tion of the search space for
binary search

Index Key Value

low 0 Amdahl, Gene USA

1 Berners-Lee, Tim UK

2 Boole, George UK

3 Godel, Kurt Austria

4 Karp, Richard USA

5 Knuth, Donald USA

6 Leibniz, Gottfried Germany

mid → 7 Makimoto, Tsugio Japan

8 Moore, Gordon USA

9 Torvalds, Linus Finland

10 Turing, Alan UK

11 Wu, Wenjun China

12 Von Neumann, John Hungary

13 Yang, Xiong China

high 14 Yao, Andrew China

164 4 Algorithmic Thinking

fmt.Println(t, "is", lookup(t))
}

4.3.4.2 Binary Search in O(logn) Time

A more efficient algorithm is binary search, which applies to a pre-sorted dictio-
nary, as shown in Table 4.6. The main idea is to narrow down the search space by
half with each iteration. Looking up a record with an input key K in a sorted n-
element array A needs only O(logn) iterations. The algorithm goes as follows:

Initially: low, high = 0, n-1 // indices = [0, n-1]
while indices not empty

mid = (low+high)/2
if K == A[mid].key then return A[mid].value
if K < A[mid].key then high=mid-1 // indices = [low, mid-1]
else low=mid+1 // indices = [mid+1, high]

return "not found"

Binary search has the following notable differences from linear search.

• The dictionary is stored in an array with explicit index. The array is presorted by
Key. That is, if j>i, then A[j].key > A[i].key. For instance, 14>8 and A[14].key >
A[8].key, because A[14].key ¼ "Yao, Andrew", A[8].key¼"Moore, Gordon".

• In each iteration, the input K is compared to the Key of the middle element. If
there is a match, the binary search algorithm returns the Value of the middle
element and stops. If there is a mismatch, the algorithm cuts the search space by
half (by adjusting low or high) and goes to the next iteration.

• If no value is returned after all iterations, the input key K does not match the key
of any of the array elements. The algorithm outputs "not found".

For instance, to look up "Knuth, Donald", the search space evolves as follows. At
the first iteration, "Knuth, Donald"<"Makimoto, Tsugio", update high to 6.

In Iteration 2: "Knuth, Donald">"Godel, Kurt", update low to 4

Index Key Value

low 0 Amdahl, Gene USA

1 Berners-Lee, Tim UK

2 Boole, George UK

mid → 3 Godel, Kurt Austria

4 Karp, Richard USA

5 Knuth, Donald USA

high 6 Leibniz, Gottfried Germany

In Iteration 3: "Knuth, Donald"¼"Knuth, Donald", found; return "USA"

4.3 Other Examples of Interesting Algorithms 165

Index Key Value

low 4 Karp, Richard USA

mid → 5 Knuth, Donald USA

high 6 Leibniz, Gottfried Germany

It takes 3 iterations to look up "Knuth, Donald" and outputs "USA". What if the
input key K does not match any key of the array? Then logn iterations are needed.
For instance, it takes log(15) ¼ 4 iterations to look up "Babayan, Boris" and outputs
"not found".

When implementing the binary search algorithm in a Go program, we need to pay
special attention to making sure that the given dictionary is a presorted array. That is,
the Key field is ordered. We use a struct type to define an array element.

const n = 15
var studentsArray = [n] struct {
key string //studentName
value string //studentCountry

}

Variables key and value are ASCII strings. "Gödel, Kurt" must be written as
"Godel, Kurt", since ö is not an ASCII character. "von Neumann, John" must be
written as "Von Neumann, John", since ‘v’ has a large ASCII encoding than capitals.

The complete binary.search.go program follows.

package main
import "fmt"
const n = 15
var studentsArray = [n] struct {

key string
value string

}{
{"Amdahl, Gene", "USA"}, {"Berners-Lee, Tim", "UK"},
{"Boole, George", "UK"}, {"Godel, Kurt", "Austria"},
{"Karp, Richard", "USA"}, {"Knuth, Donald", "USA"},
{"Leibniz, Gottfried", "Germany"}, {"Makimoto, Tsugio", "Japan"},
{"Moore, Gordon", "USA"}, {"Torvalds, Linus", "Finland"},
{"Turing, Alan", "UK"}, {"Von Neumann, John", "Hungary"},
{"Wu, Wenjun", "China"}, {"Yang, Xiong", "China"},
{"Yao, Andrew", "China"},

}
func lookup(studentName string) string {
var low, high, mid int
low, high = 0, n-1
for low <= high {

mid = (low + high) / 2
if studentName == studentsArray[mid].key {
return studentsArray[mid].value

}
if studentName > studentsArray[mid].key {

166 4 Algorithmic Thinking

low = mid + 1
} else { high = mid - 1 }

}
return "not found"

}
func main() {
s, t := "Knuth, Donald", "Babayan, Boris"
fmt.Println(s, "is from", lookup(s))
fmt.Println(t, "is", lookup(t))

}

The screen outputs are:

> go run ./binary.search.go
Knuth, Donald is from USA
Babayan, Boris is not found
>

4.3.4.3 Hash Search in O(1) Time

Binary search (O(logn)) is much faster than linear search (O(n)). However, some
application scenarios need an even faster algorithm with constant complexity, i.e., O
(1). For instance, when one registers for an Internet service, the system may need to
instantly check against a trillion-record dictionary, to see if a particular user name,
e.g., "johnSmith", is already chosen by another user. When one compiles a docu-
ment, the document-writing software system constantly checks against a million-
record English dictionary, to see if a word just entered is misspelled.

A method called hashing can help achieve this goal. The hash search algorithm is
based on three basic observations.

• First, although the number of keys and records in the dictionary may be quite
large, the number of keys actually stored is much smaller.

• The keys actually stored can be organized as a hash table, such that a hash index
can be computed in O(1) time from an input key by a hash function, to directly
access an element of the hash table. That is, a lookup operation needs only O
(1) time, when we are lucky.

• When we are not lucky, several keys may map to the same hash index, a situation
called collision. The collided keys need to be further organized, e.g., as a linked
list. If most of search time is spent on looking through a linked list, the worst-case
time complexity for lookup becomes O(n). However, computer science has
produced optimized hash search algorithms, such that the average time complex-
ity for lookup becomes O(1).

Here we use the concept of average time complexity. A dictionary, once
produced, will often be looked up many times. Suppose there are m lookup opera-
tions in total. Some lookup operations take O(n) time, and some take only O(1) time.
Assume the i-th lookup operation takes T(i), where 1� i�m. Then the average time

4.3 Other Examples of Interesting Algorithms 167

complexity for a lookup operation is
Pm

i¼1T ið Þ� �
=m . Suppose 1 trillion lookup

operations are performed. One million of them each take O(n) time, and the rest
each take O(1) time. Then, for each lookup operation, the worst-case time complex-
ity is O(n), but the average time complexity becomes only O(1).

As a concrete example of hashing, suppose a legitimate user name consists of
10 digits and letters, such as "johnSmith9". Then the number of possible user names
is huge (6210 � 8.4 � 1017). However, the number of user name strings actually
stored could be much smaller, say 1 million. The actually stored keys (user names)
and records are organized as a hash table of 1 million elements.

For the studentsMap example, a key (e.g., "Knuth, Donald") is the name of a
computer science student, family name first. Again, the possible number of keys is
huge. Assume the number of keys and records actually stored is 15 and the hash table
has 15 elements. Then there will be no collision. Assume a more realistic case where
the number of keys and records actually stored is 15, and the hash table has only
6 elements. Then there will be collisions, and each group of collided records is
organized as a linked list.

Similar to linear search, the hash search algorithm is given as input a dictionary of
key-value pairs shown in Table 4.5, and a Key to look up. The output is the pairing
Value, when the Key is found in the dictionary, or "not found" if otherwise. To
implement the hash search algorithm in a Go program hash.search.go, we need to
pay attention to the following details.

• Implement a linked list as a number of records connected by pointers.
• Implement a hash table as an array of such records.
• The value of an array index is computed by a hash function.
• The main function first fills up the hash table with record items.
• To lookup a Key such as "Knuth, Donald", first use its hash function output as

index to access the array element of the hash table. If "Knuth, Donald" is found,
return his country "USA". If not found there, continue traversing the linked list.

The key-value pairs of Table 4.5 are initialized in a map variable studentsMap.

var studentsMap = map[string]string{
"Berners-Lee, Tim": "UK", "Wu, Wenjun": "China",
"Godel, Kurt": "Austria", "Turing, Alan": "UK",
"Knuth, Donald": "USA", "Leibniz, Gottfried": "Germany",
"Von Neumann, John": "Hungary", "Amdahl, Gene": "USA",
"Yao, Andrew": "China", "Moore, Gordon": "USA",
"Yang, Xiong": "China", "Karp, Richard": "USA",
"Boole, George": "UK", "Makimoto, Tsugio": "Japan",
"Torvalds, Linus": "Finland",

}

• (1) Implement a linked list as a number of records connected by pointers.
The variable Record in hash.search.go is similar to studentsArray of the binary

search example. They both use a struct data type to represent key-value pairs.

168 4 Algorithmic Thinking

var studentsArray = [n] struct {
key string // studentName
value string

}

However, variable Record is a three-field structure. In addition to the
key-value pair, it has a next field, which is a pointer to the next Record in the
linked list, where *Record denotes the memory address of a Record.

type Record struct {
next *Record
studentName string
studentCountry string

}

• (2) Implement a hash table as an array of such records.
Variable hashTable denotes an array of 6 elements, with array indices 0, 1,

2, 3, 4, 5. Each element hashTable[i] holds a pointer to a Record.

const HashTableSize = 6
var hashTable [HashTableSize] *Record

• (3) The value of an array index is computed by a hash function.
The element of an array A at index i is accessed by A[i]. In a hash table, the

array element for studentName is accessed by first computing a hashFunction.

hashIndex := hashFunction(studentName)
entry := hashTable[hashIndex]

The hash function first finds the sum of ASCII values of characters in
studentName, using code from the student name coding exercise. Then the
modulus operator % is used to get the remainder of sum mod 6, where 6 is the
size of the hash table.

func hashFunction(name string) int {
sum := 0
for i := 0; i < len(name); i++ { sum = sum + int(name[i]) }
return sum % HashTableSize

}

For instance, given key¼"Berners-Lee, Tim", we have

4.3 Other Examples of Interesting Algorithms 169

sum of "Berners-Lee, Tim" = 1418
sum % hashTableSize = 1418 % 6 = 2

Thus, hashFunction("Berners-Lee, Tim") returns 2.
• (4) Before any looking up, the hash table needs to be filled with record items.

The action of filling out hashTable is done by the following code. Recall that
the for loop ranges over studentsMap, one record (key-value pair) at a time. For
each key-value pair, a new record is created and inserted to a hashTable element.

for key, value := range studentsMap { // fill out hashTable
hashIndex := hashFunction(key)
newRecord := &Record{ // & denotes the address of Record
next: hashTable[hashIndex],
studentName: key,
studentCountry: value,

0

1

2

3

4

5

nil

nil

nil

nil

nil

nil

0

1

2

3

4

5

nil

nil

0xc04206c210

nil

nil

nil

0xc04206c210

nil

Berners-Lee, Tim

UK

0

1

2

3

4

5

nil

nil

0xc04206c690

nil

nil

nil

0xc04206c690

0xc04206c210

Makimoto, Tsugio

Japan

0xc04206c210

nil

UK

(a) (b)

(c)

Berners-Lee, Tim

Fig. 4.15 The hash table with associated linked list for hashTable[2]. (a) Initial table. (b) After
inserting record for Berners-Lee. (c) After inserting record for Makimoto

170 4 Algorithmic Thinking

}
hashTable[hashIndex] = newRecord

}

Initially, all elements of the array variable hashTable are initialized to the zero
value of pointer, which is nil. That is, hashTable[i] contains value nil for all i.

Consider the case when the for loop goes to the key-value pair "Berners-Lee,
Tim": "UK", where key¼ "Berners-Lee, Tim" and value¼ "UK". We know that
the statement

hashIndex := hashFunction(key)

assigns 2 to hashIndex. The next few statements creates and inserts a new
record for "Berners-Lee, Tim" to the element hashTable[hashIndex], that is,
hashTable[2]. More specifically, we see the following execution steps, illustrated
in Fig. 4.15.

Figure 4.15a shows the initial configuration of hashTable, where all elements
contains nil: the pointer points to nowhere. Figure 4.15b shows the configuration
after the record for Berners-Lee is created and inserted. This new record has an
address newRecord, and its three fields have the following values:

newRecord.next: nil
newRecord.studentName: "Berners-Lee, Tim"
newRecord.studentCountry: "UK"

The system allocates memory space for this record, which happens to assign
address 0xc04206c210 to newRecord.

Figure 4.15c shows the configuration after the record for Makimoto is created
and inserted. Note that this record is inserted at the front of the linked list. This
new record has an address newRecord, and its three fields have the following
values:

newRecord.next: 0xc04206c210
newRecord.studentName: "Makimoto, Tsugio"
newRecord.studentCountry: "Japan"

The address of this record, newRecord, is 0xc04206c690. This is an address
automatically generated by the Go programming language system. It may change
when the same program executes again. That is why we use a more abstract
arrowed line to denote a pointer. Figure 4.16 shows the filled-out hash table and
linked lists.

• (5) A lookup operation first finds the hash table array element, and then traverses
the linked list.

To look up the record for the input key "Knuth, Donald", we have

sum of "Knuth, Donald" = 1192; sum % hashTableSize = 1192 % 6 = 4

4.3 Other Examples of Interesting Algorithms 171

Thus, the hash table element is hashTable[4], which points to the record for
Amdahl. Since the key "Amdahl, Gene" does not match the input key "Knuth,
Donald", the program goes to the next record by following the next field. Then we
have a match.

The complete hash.search.go program follows.

package main
import "fmt"

type Record struct {
next *Record
studentName string
studentCountry string

}

const HashTableSize = 6
var hashTable [HashTableSize] *Record

func hashFunction(name string) int {
sum := 0
for i := 0; i < len(name); i++ { sum = sum + int(name[i]) }

Wu, Wenjun

China

Godel, Kurt

Austria

Torvalds, Linus

Finland

Karp, Richard

USA

Moore, Gordon

USA

nil

Japan

Turing, Alan

nil

UK

Von Neumann, John

Hungary

Knuth, Donald

USA

Amdahl, Gene

USA

China

0

1

2

3

4

5

Leibniz, Gorrfried

Germany

nil

Yao, Andrew

China

Boole, George

UK

nil

UK

nil

Yang, Xiong Makimoto, Tsugio

nil

Berners-Lee, Tim

Fig. 4.16 The hash table with associated linked lists for studentsMap

172 4 Algorithmic Thinking

return sum % HashTableSize
}

func lookup(studentName string) string {
hashIndex := hashFunction(studentName)
entry := hashTable[hashIndex]
current := entry
for current != nil {
if current.studentName == studentName {
return current.studentCountry // keys match

}
current = current.next // otherwise goto next

}
return "not found"

}

var studentsMap = map[string]string{
"Berners-Lee, Tim": "UK", "Wu, Wenjun": "China",
"Godel, Kurt": "Austria", "Turing, Alan": "UK",
"Knuth, Donald": "USA", "Leibniz, Gottfried": "Germany",
"Von Neumann, John": "Hungary", "Amdahl, Gene": "USA",
"Yao, Andrew": "China", "Moore, Gordon": "USA",
"Yang, Xiong": "China", "Karp, Richard": "USA",
"Boole, George": "UK", "Makimoto, Tsugio": "Japan",
"Torvalds, Linus": "Finland",

}

func main() {
for key, value := range studentsMap { // fill out hashTable
hashIndex := hashFunction(key)
newRecord := &Record{
next: hashTable[hashIndex],
studentName: key,
studentCountry: value,

}
hashTable[hashIndex] = newRecord

}
s, t := "Knuth, Donald", "Babayan, Boris" // look up s and t
fmt.Println(s, "is from", lookup(s))
fmt.Println(t, "is", lookup(t))

}

The screen outputs are:

> go run ./hash.search.go
Knuth, Donald is from USA
Babayan, Boris is not found
>

4.3 Other Examples of Interesting Algorithms 173

4.4 P vs. NP

In the previous sections, we have learned a variety of effective methods to design
smart algorithm for many problems. We always try to solve a problem as fast as
possible. For example, in the sort algorithm, while the bubble sort algorithm and the
insertion sort algorithm need O(n2) time, the merge sort algorithm needs only O
(n log n) time. We call O(n2) or O(n log n) the time complexity of the corresponding
algorithm. Thus, the merge sort algorithm is more efficient.

One may wonder if it is possible to design an even faster algorithm for the sorting
probm. In this section, we will briefly introduce complexity theory which focuses on
the complexity of a computational problem, instead of any particular algorithm. We
want to answer the following question systematically:

Are some computational problems inherently difficult to solve effectively?
In Sect. 4.4.1, we use the sorting problem as an example to illustrate the time

complexity of a computational problem. We then introduce the most important
complexity classes P and NP in Sect. 4.4.2. In the final section, we show several
examples of P and NP.

4.4.1 Time Complexity

Intuitively, the time complexity of a computational problem is the minimum time
complexity of any algorithm which can solve this problem. It is an important
measurement to understand how difficult a problem is.

Consider the sorting problem discussed before. Since we have merge sort algo-
rithm to solve it in O(n log n) time, the time complexity of sorting problem is at most
O(n log n). But is there any other algorithm which can solve the sorting problem in o
(n log n) time? This question is hard to answer since the answer depends on the usage
scenario. We need a more precise model to discuss the hardness of the sorting
problem.

Let us assume that the elements to be sorted can only be compared in pairs. That
is, we can treat every element as a black box, the only way to know the order of
element a and b is to compare them with one comparison step. Of course, we assume
any pair of elements can be compared and the results form a total order over all
elements.

Under these assumptions, we will show that any algorithm needs at least n log n
steps of comparison operations in the worst case. The idea comes from the informa-
tion theory. The number of all possible orders is n!, which is actually the number of
all possible permutations over {1, 2, . . ., n}. For each comparison step, the result will
give us 1 bit information, either a < b or a > b. Thus, in the worst case, if some
algorithm can use k comparison steps to distinguish all possible orders, it means that
2k� n!. Thus, the time complexity of any algorithm which can solve sorting problem

174 4 Algorithmic Thinking

isΩ(n log n). We call it the lower bound of time complexity for sorting problem, and
it illustrates how hard the problem is.

Thus, the time complexity for the sorting problem isΘ(n log n). We say the merge
sort algorithm is asymptotic optimal.

4.4.2 P and NP

The important work of computational complexity theory is to determine the time
complexity and space complexity of various problems. But it is difficult to decide the
exact time complexity for all problems, so the researchers create many complexity
classes where each complexity class contains various problems whose complexity
are similar in some ways. P and NP are two most famous complexity classes in the
computational complexity theory.

Intuitively, the complexity class P contains all decision problems which have
polynomial time algorithms. Here, decision problem means that the output of the
problem is either YES or NO, and the polynomial time algorithm means the time
complexity is a polynomial function over the size of input.

Complexity class P contains all decision problems that can be solved by a
deterministic Turing machine using a polynomial amount of computation time.

In practical applications, people usually refer to polynomial time algorithms as
effective algorithms. Therefore, an important task in the field of computational
complexity is to determine whether certain computational problems have polyno-
mial time algorithms. In other words, decide whether such problems belong to P or
not. For example, the sorting problem is in P since it has a polynomial time
algorithm. The bubble sort algorithm, insertion sort algorithm, merge sort algorithm
and quicksort algorithm are all polynomial time algorithms.

However, people gradually discovered that many basic problems are in such a
gray area: we have neither found polynomial time algorithms to solve these prob-
lems, nor have we been able to prove that such algorithms do not exist. These
problems involve a wide range of areas, distributed in various fields: operational
research, optimization, combinatorics, logic, artificial intelligence, big data
processing, and so on. Even after more than half a century of development, theoret-
ical computer scientists are still at a loss for this gray area, and most of their problems
still stay in this gray area. However, researchers have made great progress in the
characterization of these problems and found that a large class of these problems
belongs to NP, another important complexity class we introduce next.

Complexity class NP contains all decision problems that can be solved by a non-
deterministic Turing machine using a polynomial amount of computation time.

However, this definition is slightly difficult to use. We will not introduce
non-deterministic Turing machine in this book. The interested readers please refer
to any complexity theory textbook. Here, we introduce an equivalent definition of
the class NP.

4.4 P vs. NP 175

Complexity class NP (equivalent definition): contains all decision problems
that whose “YES” answers can be verified in polynomial time by a deterministic
Turing machine. That is, there exists a checking algorithm which can verify the
correctness of “YES” answer with the help of a witness in polynomial time.

More precisely, a decision problem A2 NP, if and only if there exists a polyno-
mial time algorithm S which is a checking algorithm and two constants c, c' such that
the following two conditions hold:

1. For any input instance x whose correct answer should be “YES”, there exists a
witness y such that |y|� c0|x|c and if the algorithm S takes (x, y) as the input, it will
output “YES”;

2. For any input instance x whose correct answer should be “NO”, for any witness
y who satisfies |y|� c0|x|c, if the algorithm S takes (x, y) as the input, it will always
output “NO”.

Now, let us use a concrete example to help understand the definition of NP.

Example 4.6. The Subset Sum Problem
Consider the following problem: given 2n integers, we want know whether it can be
partitioned into two groups whose sums are the same. The integers are not required
to be different from each other.

For example, if the input is {1,2,3,4,5,5}, the answer is YES since partition
{1,2,3,4} and {5,5} have the same sum. If the input is {1,2,3,4,5,6}, the answer is
NO since the sum of all integers is 21 which is an odd number.

This problem is quite important in cryptograph. However, till now, we do not
know how to solve this problem in polynomial time over n. The naïve algorithm is to
check all possible partitions. The time complexity of the naïve algorithm is O(n2n)
which is exponential over n. On the other hand, we do not know how to prove that
such problem cannot be solved in polynomial time. This is one example of the
problems in the gray area we mentioned before. Here, we want to show that the
subset sum problem is in NP.

To show that some problem belongs to NP, we need to construct the checking
algorithm S and for any YES instance, construct the witness. For the subset sum
problem, if x is a YES instance, we construct the witness y¼ (y1, y2) where (y1, y2) is
a partition of input x and the sums of y1 and y2 are the same. The checking algorithm
S is designed to check two things: 1) the witness y ¼ (y1, y2) is a partition of input
instance x, i.e., every element in x appears exactly once in either y1 or y2; and 2) the
sum of integers in y1 is the same as the sum of integers in y2. Obliviously, the size of
witness is a polynomial over the size of input, and the checking algorithm also runs
in polynomial time. It is also easy to show that for any NO instance, it is impossible
to construct a witness which can pass the checking algorithm. Thus, we have shown
that the subset sum problem is in NP.

☶

For any decision problems in P, it is also in NP, since we can compute the correct
answer for any instance within polynomial time and we do not need witness at all.
Thus, we have P ⊆ NP. In the computer science field, one of the most fundamental

176 4 Algorithmic Thinking

and far-reaching issues is whether the opposite direction holds or not, that is, if some
decision problem can be verified efficiently, is it always be computed efficiently?
The problem is called P versus NP problem:

P versus NP problem: is P¼NP?

This question is one of the seven millennium prize problems. At present, among
these seven problems, only the Poincaré conjecture has been solved by the mathe-
matician Grigori Perelman in 2003. The remaining six problems have not been
solved. Although it is still unconfirmed whether P is equal to NP, most scientists
believe that the equality does not hold, that is, there exists some decision problem
which can be efficiently verified but cannot be efficiently computed.

4.4.3 (***) Examples in the NP Class

As we mentioned before, in the complexity class NP, there are many fundamental
problems which we do not know whether they belong to P or not. We discuss two
more examples of them: the graph coloring problem and the Hamiltonian path
problem.

Example 4.7. The Graph Coloring Problem
The graph coloring problem can be specified as follows:

• Input: a graph G ¼ (V,E) where V is the set of vertices and E is the set of edges,
an integer k;

• Output: decide whether there is a way to color each vertex with one of the
k colors so that no adjacent vertices are of the same color.

Similar to the subset sum problem, the computer science community still does not
know how to solve this problem in polynomial time over n ¼ |V|, m ¼ |E| and k. The
naïve algorithm is to check all possible coloring methods and the time complexity is
O(mnk), which makes it an exponential time algorithm.

We now show the graph coloring problem belongs to NP. The witness of a YES
instance is the valid way of coloring f : V ! {1, 2, . . ., k}. The size of the witness is
definitely polynomial over the size of input. The checking algorithm is straightfor-
ward. We only need to check for each edge, two endpoints do not have the same
color. It is easy to check if the graph cannot be colored within k colors, it is
impossible to find a valid way of coloring. Thus, Graph coloring problem belongs
to NP.

☶

Example 4.8. The Hamiltonian Path Problem
The Hamiltonian path problem can be specified as follows:

4.4 P vs. NP 177

• Input: a graph G ¼ (V,E) where V is the set of vertices and E is the set of edges;
• Output: decide whether there is a Hamiltonian path in this graph. A Hamiltonian

path is a path which visits each vertex exactly one.

Again, we do not know how to solve this problem in polynomial time over n ¼ |
V|. The naïve algorithm is to check all possible paths so that the time complexity is O
(n � n!) which is exponential over n.

We show that the Hamiltonian path problem belongs to NP. The witness of a YES
instance is the valid Hamiltonian path V1, V2, . . ., Vn which can also be seen as a
permutation over V. The size of the witness is definitely polynomial over the size of
input. The checking algorithm is also straightforward. We need to check two things:
firstly, there is an edge between Vi and Vi + 1 for i¼ 1, 2, . . ., n� 1; secondly, V1, . . .,
Vn are different from each other. It is easy to check if the graph does not contain a
Hamiltonian path, it is impossible to find some witness which can pass the checking
algorithm. Thus, Hamiltonian path problem belongs to NP.

☶

In these two examples, it seems trivial to show that their decision problems
belong to the complexity class NP. Actually, they not only belong to the class NP,
but also are the most difficult problems in NP. They are NP-complete problems. If
you can find a polynomial time algorithm for either the graph coloring problem or
the Hamiltonian path problem, then every decision problem in NP has a polynomial
time algorithm, which means P¼NP. On the other hand, if you can prove that either
the graph coloring problem or the Hamiltonian path problem does not have a
polynomial time algorithm, you show P 6¼NP. So, if you are interested in P versus
NP problem, you do not need to consider a class of problem. Instead, you can just
think about one particular decision problem, for example, the graph coloring prob-
lem or the Hamiltonian path problem. Any ideas?

4.5 Exercises

1. Refer to Example 4.1. Show that Euclid’s algorithm indeed computes the result
gcd(x, y)¼12 in three steps, given inputs x¼36 and y¼24.

2. Refer to Example 4.1. Show that Euclid’s algorithm is indeed an algorithm,
because it satisfies Knuth’s five properties.

3. An algorithm must have at least one output, but it may not have any input. Please
give an example of a meaningful algorithm without any input.

4. Which of the following statement is correct?

(a) 0.1n2 is O(n)
(b) 10000n is O(n2)
(c) n log n is Ω(n)
(d) 10n2 � 10n + 1 is Θ(n)

5. Which of the following statement is correct?

178 4 Algorithmic Thinking

(a) n3

ln n þ n2 is O n2ð Þ
(b) n2 þ 2n2 log n

log log n is Θ(n
2 log n)

(c) 2n
2
is Ω(n)

(d) (lnn)lnn is O(n100)

6. Please sort the following asymptotic formulas from small to large: Θ(logn),
Θ(n), Θ n

log n

� �
, Θ(n log n).

7. Please sort the following asymptotic formulas from small to large: Θ((logn)n),
Θ(n100), Θ(nlogn), Θ((logn)!).

8. The Sunway TaihuLight supercomputer was the world’s fastest supercomputer
from June 2016 to June 2018. It can finish 93 million billion operations per
second. If we use this supercomputer to compute Steiner tree problem with 1000
vertices, how long do we need? The best algorithm for Steiner tree problem runs
in n log 2n time where n is the number of vertices.

9. Given an unsorted array [1, 3, 9, 7, 6, 7, 8, 5, 2, 4], please describe the executing
processes of the following sorting algorithms: bubble sort, insertion sort, merge
sort and quicksort algorithms.

10. The insertion sort algorithm and the merge sort algorithm have a time complex-
ity of O(n2) and O(n log n), respectively. What is the main reason that merge
sorting is more efficient than insertion sorting?

11. For the single-factor optimization problem, why is that the equal division
algorithm is not as efficient as the golden section algorithm? The textbook stated
that it is smart to divide the problem into two equal sized subproblems.

12. For the integer multiplication problem, what is the main reason that the naïve
algorithm of divide and conquer is not efficient?

13. Refer to the integer multiplication problem in Sect. 4.2.4. If you divide two
numbers into 3 segments (each segment is an n/3-digit number), is it possible to
find a faster algorithm for integer multiplication?

14. Consider the sorting problem of n numbers. In the worst case, how many
comparisons do we need in the quicksort and the bubble sort algorithms?

(a) O(n log n), O(n2)
(b) O(n2), O(n2)
(c) O(n), O(n log n)
(d) O(n log n), O(n log n)

15. Given a sorted array with n numbers, what is the running time if we want to
check whether element x and y are in this array?

(a) Θ(1)
(b) Θ(logn)
(c) Θ(n/ log n)
(d) Θ(n)

16. Solve the following recursion: T(n) ¼ ()

4.5 Exercises 179

T 1ð Þ ¼ 1

T nð Þ ¼ 2T n� 1ð Þ
�

17. Solve the following recursion: T(n) ¼ ()

T 1ð Þ ¼ 1

T nð Þ ¼ 3T
n
2

� �
þ n2

(

18. Solve the following recursion: T(n) ¼ ()

T 1ð Þ ¼ 1

T nð Þ ¼ 2T
nffiffiffi
2

p
� �� �

þ n2

8<
:

19. 128 students take part in a table tennis match. Assume the ability of the students
forms a total order. If we want to decide the champion, how many matches do
we need? If we want to decide the champion and runner-up, how many matches
do we need?

(a) 127, 128
(b) 127, 133
(c) 127, 192
(d) 127, 253

20. There are 16 bottles of liquid and one of them is poisonous. The poisonous one
can make the mouse die immediately. Now we want to know which bottle is
poisonous. Each time, we can mix the liquid from several bottles and let one
mouse drink it. For each mouse, it can only drink once. In the worst case, how
many mice do we need to find the poisonous bottle?

21. Suppose you are in a skyscraper and have one egg in your hand. You want to
know from which floor can the egg fall without breaking. If you test some floor
but the egg is broken, you have no egg to test anymore. Thus, the only feasible
solution is to test one more floor each time. Now, consider you have two
identical eggs. How can you achieve the goal with as fewer number of tests as
possible? You can assume that the egg must be broken if it falls from the top
floor which is the n-th floor.

22. In the stable matching problem, is the stable matching unique? If it is not unique,
please give an instance where there are at least two different stable matching.

23. In the stable matching problem, is the Gale-Shapley algorithm beneficial for
boys or girls? Why?

24. Does the following decision problem belong to NP?

• Problem: Given 2n integers, decide whether we can partition them into two
sets (each set contains n integers) where the sum of two sets is equal.

180 4 Algorithmic Thinking

25. Does the following decision problem belong to NP?

• Problem: Given two integers x and y, decide if x is a multiple of y.

26. What is the relation between P and NP? Assume the rectangle represents all
decision problems which can be computed by Turing machine.

(a)

P NP

(b)

NPP

(c)

P NP

(d)

P NP

4.6 Bibliographic Notes

The chapter quotation is from Professor Brian Kernighan of Princeton University
[1]. Professor Donald Knuth of Stanford University gave a five-point definition of
algorithm [2]. Strassen’s algorithm for matrix multiplication and improvements later
can be found in [3, 4]. The stable matching problem is studied in [5, 6]. The Clay
Mathematics Institutes listed seven fundamental mathematic problems as the Mil-
lennium Prize problems, which are “important classic questions that have resisted
solution for many years.” [7]. One of them is the P vs. NP problem.

4.6 Bibliographic Notes 181

References

1. Kernighan BW (2017) Understanding the digital world: what you need to know about computers,
the internet, privacy, and security. Princeton University Press, Princeton

2. Knuth DE (1997) The art of computer programming. Addison-Wesley, Boston
3. Strassen V (1969) Gaussian elimination is not optimal. Numer Math 13:354–356
4. Karstadt E, Schwartz O (2017) Matrix multiplication, a little faster. In: Proceedings of the 29th

ACM symposium on parallelism in algorithms and architectures, pp 101–110
5. Gale D, Shapley LS (1962) College admissions and the stability of marriage. Am Math Monthly

69(1):9–15
6. Chen J, Skowron P, Sorge M (2019) Matchings under preferences: Strength of stability and trade-

offs. In: Proceedings of the 2019 ACM conference on economics and computation, pp 41–59
7. https://www.claymath.org/millennium-problems

182 4 Algorithmic Thinking

https://www.claymath.org/millennium-problems

Chapter 5
Systems Thinking

Enable people to follow the way, without them having to
understand [the internals of] it.
—Confucius (551–479 BCE)
Inside every large program, there is an algorithm trying to
get out. [Here, algorithm also means specification or high-
level design of a system]
—Leslie Lamport, 2018

Computational processes execute on computing systems, including computer sys-
tems and computing application systems. Systems thinking is the way of thinking to
make computational processes practical. Systems thinking must systematically and
thoroughly address all necessary details and complexities. That is,

Being practical ¼ Being thoroughþ Being systematic
þ Coping with complexity:

Without systems thinking, we would not have had the vibrant computing eco-
system today, with billions of users using millions of applications on various
devices.

The main character of systems thinking is: using abstractions to compose
modules into a system, to enable seamless execution of computational processes.
This chapter discusses systems thinking with its three key concepts: abstraction,
modularization, and seamless transition.

Abstraction is a creative process of abstracting the essentials, as well as the
process’s outcome. Computer science abstractions mainly consist of data abstrac-
tions and control abstractions. All abstractions have three properties: constrained,
objective, and generalizable, i.e., the COG properties.

Modules are a special type of abstractions which enforce the information hiding
principle. A system is comprised of modules by interconnecting their interfaces. We
discuss a number of hardware and software abstractions. The discussions are ordered
by levels of abstractions, from the lowest-level logic gates to the highest-level

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
Z. Xu, J. Zhang, Computational Thinking: A Perspective on Computer Science,
https://doi.org/10.1007/978-981-16-3848-0_5

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3848-0_5&domain=pdf
https://doi.org/10.1007/978-981-16-3848-0_5#DOI

application software, including combinational circuits, sequential circuits, instruc-
tion pipeline, von Neumann architecture, and software stack.

Seamless execution is concerned with how to ensure smooth executions of
computational processes. What is the first instruction to execute? Where to find
the next instruction? How to transition from one instruction to the next? Is there any
bottleneck? What if there is abnormality? We discuss four “laws” which make
seamless execution possible: Yang’s cycle principle, Postel’s robustness principle,
von Neumann’s exhaustiveness principle, and Amdahl’s law.

5.1 Systems Thinking Has Three Objectives

Let us consider computing without systems thinking, even having the benefits of
logic thinking and algorithmic thinking. We can still theoretically solve all comput-
able problems, by executing algorithms on Turing machines. But we quickly run into
practical problems, as illustrated by the following example.

Example 5.1. Understand Message Storage in WeChat
The WeChat (微信) application system is a popular computer application service. In
2018, the WeChat community exceeded 1 billion users worldwide. Can we under-
stand or design a WeChat system by executing algorithms on Turing machines? It is
not practical to do so.

Let us consider a specific problem in the WeChat system, the message storage
problem: when I send a chat message to my family, where should the WeChat
service store my message? This storage problem is not a logic problem or an
algorithmic problem. We cannot easily formulate and solve the storage problem
and evaluate alternative solutions, as we do for the sorting problem. It is a systems
problem involving thoughtful considerations and tradeoffs involving many issues of
practical systems. A way of systems thinking is needed, which has three main
objectives.

• Being thorough. The WeChat system design considers all necessary issues such
as functionality, user experienced convenience, performance, fault tolerance,
privacy, as well as system scalability.

• Being systematic. WeChat adopts a systematic approach called cloud computing.
Consequently, messages are stored on the WeChat cloud datacenter.

• Coping with complexity. There are many possibilities to consider. A message
can be stored on many places: my smartphone, my family members’ devices, the
WeChat system, or a third-party platform. Which one is the correct or the better
choice? How to go about answer such a question?

☶

Systems thinking strives to simultaneously achieve all three objectives. This
makes system thinking a synergy of science, engineering, and art. It is the reason
why a system designer is often known as an architect.

184 5 Systems Thinking

5.1.1 Being Thorough

In understanding or designing a system such as WeChat, we need a thorough way to
cover all the details of the integrated whole system from end to end, ignoring no
necessary details.

For instance, when considering where to store a message, we need to consider the
entire path the message may traverse, from the message sender end to the message
receiver end. We also need to consider the whole stack of systems components from
high-level user interfaces, algorithmic descriptions, software and hardware, down to
the lowest level of automatic execution on a computer.

We use three examples to illustrate how systems thinking emphasizes thorough-
ness. One example is representative of necessary but boring details. The other two
illustrate how to take care of necessary details by using clever abstractions. Systems
thinking requires that all necessary details should be considered, even those boring
ones. At the same time, systems thinking strives to avoid simple-minded enumera-
tion of all details, by using abstractions.

Example 5.2. Big Endian Versus Little Endian Data Representations
A necessary but boring detail is the ordering of bytes of a multi-byte number. We do
not see such details in the design and analysis of an algorithm.

For instance, a 32-bit integer 107801862710 can also be written as 0x40414243,
which consists of four bytes, where Byte0 is 01000000¼0x40, Byte1 is
01000001¼0x41, Byte2 is 01000010¼0x42, and Byte3 is 01000011¼0x43. Most
computers have a byte addressable memory. When storing this number in memory,
we need four consecutive memory byte cells starting at address A.

The problem is: when storing this number in memory, in what order to place the
four bytes 0x40, 0x41, 0x42, 0x43 in the four memory cells A, A+1, A+2, A+3?
Two representations (orderings) are used in practice, as shown in Fig. 5.1.

The little endian ordering places the least significant byte, i.e., 0x43 of
0x40414243, in the smallest address A, and the most significant byte, i.e., 0x40 of
0x40414243, in the biggest address A+3. The big endian ordering simply reverses

Address

…

A

A+1

A+2

A+3

…

…

A

A+1

A+2

A+3

…

Byte0 Byte1 Byte2 Byte3

40 41 4342
40

41

42

43

43

42

41

40How
is the integer

1078018627 represented
in big and little endians

Address of this 4-byte, 32-bit number starts at A

Fig. 5.1 Big endian versus little endian representations of integer 1078018627

5.1 Systems Thinking Has Three Objectives 185

the order. Similarly, in computer communication, where a bit-stream is transmitted
between two computers, the little endian ordering sends the least significant bit first,
and the big endian ordering sends the most significant bit first.

The big endian versus little endian ordering issue got its name from Gulliver’s
Travels, a satirical novel by Jonathan Swift. In a fictional country Lilliput, two
factions fought a holy war over from which end to break a boiled egg. In 1980,
Danny Cohen, at Information Sciences Institute, University of Southern California,
applied the terms big endian and little endian to computer science. Cohen holds the
viewpoint that “Agreement upon an order is more important than the order agreed
upon.” Forty years later, the computer science fields settled into a situation where
different products and communities use different endians within themselves, and
cross-community applications convert the data format whenever necessary. Some
example communities follow:

• Big endian: TCP/IP networks, MIPS processors
• Little endian: x86 processors, ARM processors, RISC-V processors

☶

Example 5.3. A Single Abstraction for Millions of I/O Devices
Recall that the von Neumann model of computer has three families of components:
the processors, the memory units, and the I/O devices. Of these three, the family of
I/O devices is the largest family, with over a million different types of devices having
been built and used.

The problem is: how do millions of applications deal with so many I/O devices?
For instance, a scratch pad is quite different from a keyboard, although both are

input devices. A display monitor is quite different from a printer, although both are
output devices.

We must be thorough, allowing a computer to interact with any I/O devices. A
brute-force approach is to design a method for an application to interact with each
device. This is not feasible, since there are million � million combinations.

Computer scientists have come up with an ingenious abstraction, called device
driver, as illustrated in Fig. 5.2.

Applications only need to interact with the generic device driver interface, which
is quite similar to the interface of accessing files. Applications only see two generic
types of I/O devices: block devices and character devices. A computer application
interacts with a character device one character at a time, such as printing out a
program output on the display monitor in command-line mode, one character at a
time. Interactions with a block device allow us to input or output a larger chunk of
information (called a block) at a time, such as outputting an image on the display
monitor in graphic mode.

When an I/O device product, say a new scratch pad called Device1, is developed,
the device vendor also develops a unit of software, say Driver1, which is the device
driver for Device1. This device driver software is developed, say, with 1 man-month
cost. It implements the generic interface and realizes all particulars of detailed I/O
operations, hiding all such details from applications.

186 5 Systems Thinking

Note that such a device driver abstraction drastically decreases the development
cost, from M�N to M+N where M is number of different applications and N is the
number of different devices. Since N andM are numbered in millions, the total cost is
reduced from trillions to millions of man-months. For each device, the development
cost is reduced from millions of man-months to a few.

The above example shows that in achieving thoroughness, systems thinking
avoids painful enumeration of all details, by using clever abstractions. We consider
another case to further illustrate this point.

☶

Example 5.4. Measure Supercomputers by Smartly Designed Benchmarks
Supercomputers are the fastest computers in the world. We want supercomputers to
increase their speed a thousand-fold every 10 years. Here lies a basic problem: How
do we precisely define and measure this objective? This problem can be further
divided into two more detailed questions:

• How to measure the speed of a supercomputer?
• How to be thorough, i.e., consider all applications when measuring the speed?

An answer to the first question is straightforward: run a small set of representative
application programs, called benchmarks, and count the number of operations
executed per second. Supercomputers measure speed with FLOPS, for 64-bit
floating-point addition and multiplication operations executed per second.

The second question is more difficult. What are representative benchmark pro-
grams? A benchmark suite usually consists of no more than a dozen programs. How
can it represent the thousands of supercomputing applications today? Systems
thinking suggests a method shown in Fig. 5.3. Supercomputing speed is significantly
influenced by a phenomenon called locality. Temporal locality refers to the fact that

Generic Device Driver Interface

App1 App2 AppN……

block character

App3

Device1 Device2 DeviceM…Device3

Driver1 Driver2 DriverM…Driver3

Fig. 5.2 Illustration of the device driver abstraction

5.1 Systems Thinking Has Three Objectives 187

data and instructions currently used tend to be used again in near future. Spatial
locality refers to a similar fact regarding address space.

The supercomputing community designed a benchmark suite containing four
benchmark programs, representing the four extreme combinations of temporal and
spatial localities: low-low, low-high, high-low, and high-high. Any other application
falls within the area enclosed by the dashed lines.

☶

5.1.2 Being Systematic

We have literally thousands of types of computers and millions of computer appli-
cations today. It is unthinkable to design or understand each of them in an arbitrary,
ad hoc way. Fortunately, computer science has created a systematic, layered
approach to support millions of applications for billions of users on their favorite
computers. This approach is called the technology stack approach. Figure 5.4 shows
a hardware-software stack for a desktop PC. Similar stacks are available for embed-
ded computers, smartphones, servers, and supercomputers.

In Fig. 5.4, the colored parts represent hardware components of a computer.
These components are formed from logic gates, combinational circuits, and sequen-
tial circuits, which in turn are constructed from transistors and wires, as well as
capacitors and resistors. Magnetic parts are the main components of hard disks.
There are millions of products of I/O devices.

The upper three layers of the stack are software. Instructions are the smallest units
of software. System software (such as operating system and compiler) and applica-
tion software are made of instructions. When any application program starts to
execute, a process of the application is created. Thus, a process is a program in

FFT Linpack

Random Access PTRAN

Low Spatial Locality High

T
em

po
ra

l L
oc

al
ity

H
ig

h

Fig. 5.3 Illustration of
using benchmarks of various
representative localities

188 5 Systems Thinking

execution. The operating system manages the processes by scheduling them to
execute on the computer hardware at certain times.

The stack of layers in Fig. 5.4 conveys two meanings of being systematic.

• First, the same stack is used to support millions of applications, instead of a
million stacks, each for one application.

• Second, an upper layer provides a higher level of abstraction than the lower
layers, and the upper layer abstraction utilizes primitive resources or abstractions
from the lower layers. For instance, a processor is made of combinational circuits
and sequential circuits, which in turn are made of transistors and wires. A
processor has a much higher level of abstraction than transistors and wires.

Keyboard

Display

Mouse

Hard Disk

USB

Ethernet

Power

Core Core

Cache

Processor

Memory

Motherboard

Memory Bus

I/O
Bus

I/O
Bus

I/O Interface

GPU

Logic Gates, Combinational Circuits and Sequential Circuits

Transistors, Capacitors, Resistors, Magnetic Parts, and Wires

Operating System

Instructions

Application Programs, Processes

Fig. 5.4 Illustration of the hardware-software stack of a desktop personal computer

5.1 Systems Thinking Has Three Objectives 189

5.1.3 Coping with Complexity

Complexity here refers to systems complexity, which is different from algorithmic
complexity in Chap. 4. A system is either a computer system, such as a laptop
computer, or a computer application system, such as WeChat. Complexity makes it
difficult to understand, design, and use a computing system. Systems thinking is
used to cope with complexity. We have already seen millions of practically working
computing systems, including WeChat. These successful cases testify that systems
thinking provides effective supports for coping with complexity.

Many factors contribute to systems complexity. We discuss four such factors
which appear frequently.

The first factor is system scale, or system size, which refers to the number of
components of a system. For instance, the main processor microchip in a smartphone
has over 2 billion transistors. If we liken the microchip to Planet Earth, and compare
transistors and wires to buildings and roads, the transistor layout diagram of a
microchip is as complex as a country’s meter-scale map, showing all buildings
and roads. The hardware system used by WeChat is as complex as a meter-scale
world map. We cannot understand such a complex system as a set of 2 quintillion
(billion billion) transistors.

The second factor is system heterogeneity, or diversity, which refers to the
number of different types of components in a system. For instance, WeChat has
over 1 billion users worldwide, where each user uses one or more computing devices
to access the WeChat services. These devices have much heterogeneity and diver-
sity. A device could be a smartphone, a pad, a PC, or even a robot on a server. The
smartphones are made by thousands of different companies. It is a wonder that
WeChat works at all with such device heterogeneity and diversity.

The third factor is system organization, i.e., how the components are connected
and organized into a system. A haphazard mess of interconnected components is
much more complex than a system with clear, principled organization.

The fourth factor is system variation, which refers to the fact that the system or
its components are often not stable, but keep changing. Furthermore, they may
change at different times and different rates. Sometimes, we also call system
variation as system dynamicity. Examples of such changes include: deploying new
products or services, upgrading an existing service or product, bug-fixing, etc.

In summary, to make computing practical, we need systems thinking which is
thorough, systematic, and can cope with systems complexity. Computer science has
accumulated a rich body of knowledge for systems thinking. The essence is using
abstractions to compose modules into a system, to enable seamless execution of
computational processes. In other words, systems thinking has three mental tools:
abstraction, modularization, and seamless transition. The beauty of systems thinking
is that even with seemingly impossible thoroughness and systematic requirements,
these mental tools enable us to cope with such complexity presented in today’s
computer application systems consisting of billions of diverse users and devices.

190 5 Systems Thinking

5.2 Abstraction

Abstraction is the creative process of abstracting a high-level concept from low-level
instances, which are full of irrelevant details and particularities. An abstraction is
also the outcome of the creative process of abstracting. This book focuses on
computing abstractions, namely, the abstracting process that produces abstractions
of information transformation by digital symbol manipulations. From the systems
viewpoint, this book studies four classes of abstractions, as listed in Table 5.1. They
are (1) data representations, (2) software abstractions, (3) hardware abstractions, and
(4) the von Neumann architecture model that bridges software and hardware.

5.2.1 Three Properties of Abstraction: COG

All abstractions have three properties, called the COG properties of abstraction.
That is, any computing abstraction is constrained, objective, and generalizable.

• Constrained. An abstraction is a high-level concept specification constrained by
hiding details. Abstraction focuses on the essential aspect when specifying the
computing system (or a subsystem) from one perspective, while hiding or ignor-
ing details from other perspectives and particularities of individual instances. The
ability to hide and ignore, namely, to constrain, is why abstraction can cope with
complexity.

Table 5.1 Four classes of abstractions

Data type bit (1 bit), hexadecimal number (4 bits), byte (8 bits), uint8 (8-bit unsigned integer),
integer (64 bits); array (n elements of the same type), slice (a descriptor pointing to an
array); text file, BMP image file; hypertext and hyperlink

Software Algorithm Smart method of information transformation, such as quicksort,
hiding text in a BMP file, etc.

Program Code realizing algorithms in computer language, such as hide.go
in the Text Hider project

Process Program in execution, such as the “hide” process running in a
Linux environment

Instruction The smallest unit of software, directly executable by computer
hardware

von Neumann Architecture: a computer model bridging software and hardware

Hardware Instruction
Pipeline

The basic hardware mechanism to automatically execute any
instruction

Sequential
Circuit

More precisely, only consider Synchronous Sequential Circuit
comprised of combinational circuits and state circuits and driven
by a clock signal; equivalent to the automata concept

Combinational
Circuit

Aka Boolean circuit, realizing a Boolean function

5.2 Abstraction 191

• Objective. Abstraction does not imply up-in-the-air vagueness or ambiguity. A
computing abstraction is a named, objective entity. It is a precisely defined
concept, both syntactically and semantically, and cannot be arbitrarily interpreted
or changed by any particular human’s whim. Objectivity makes computing
abstractions bit-accurate and automatically executable.

• Generalizable. An abstraction should be generalizable to unseen instances or
unexpected scenarios. Computing abstraction is created by humans. The created
abstraction should be able to handle existing abstractions or instances already
seen, as well as unseen instances and unexpected scenarios. This capability of
generalization is why we can use one set of abstractions of concepts and methods
to solve all problems encountered, instead of treating each individual problem
instance individually.

Example 5.5.The COG Properties of Unicode
The 128-character ASCII set is sufficient to encode English text. Can we do the same
for all the world’s text? The computer science community has come up with a
beautiful abstraction called Unicode to solve the problem. By the year 2020,
Unicode already encodes over 143,000 characters in 154 languages, including
over 70,000 Chinese characters.

“Encoding the world’s writing systems by a number of bits” is the process of
abstracting. The Unicode abstraction is the outcome of this abstracting process. It has
three properties of COG.

• Unicode is constrained. It focuses on one essential task: encoding the world’s
writing systems, or character sets. It ignores issues such as the font, the size, the
alignment of the character, whether it is boldface or italic, etc.

• Unicode is objective. Unicode is precisely defined. The Chinese character ‘志’
and the Euro sign ‘€’ have encodings U+5FD7 and U+20AC, respectively,
without ambiguity.

• Unicode is generalizable. Unicode uses a standard abstraction to solve the
problem of “encoding text in the world’s writing systems”. It is not tied to any
computer hardware, software, or application scenario. It is used on our PCs,
smartphones, and the World Wide Web. Most computer devices and applications
supported by Unicode did not exist when Unicode was designed.

☶

5.2.2 Data Abstractions

Computing abstractions mainly manifest as data abstractions and control abstrac-
tions. Data abstractions, also called data types, are abstractions of data, including
operations on such data. Examples of data abstractions include number systems, bit,
byte, character, string, integer, floating-point number, array, slice, text file, BMP
image file, hypertext and hyperlink. Control abstractions are abstractions

192 5 Systems Thinking

specifying the control structure of a system, that is, when and how to invoke which
parts of a system, to give order to the totality of the system. Examples of control
abstractions include operator precedence, sequence, selection, iteration, and func-
tion. Some abstractions exhibit features of both data abstractions and control
abstractions. We discuss several examples in this section. Section 5.3 contains
more examples of abstractions as hardware and software modules.

5.2.2.1 Positional Notation of Number Systems

Most modern number systems are positional number systems. That is, they use a
positional notation to represent a number such that the value of the number is
determined by its digits and the position of each digit. The following example
shows why the positional notation is popular: it makes doing arithmetic easy, as
we do with the usual decimal notation.

Example 5.6. Find a Person’s Age Using Roman and Decimal Numerals
A person was born in the year MCMLIV. What’s his age in the year MMXXI?

The above question uses Roman numerals. We need to find out

MMXXI – MCMLIV ¼ ?

Note the following mapping between Roman numbers and decimal numbers.

Roman M D C L X V I IV IX XL XC CD CM

Decimal 1000 500 100 50 10 5 1 4 9 40 90 400 900

Using Roman numerals to do arithmetic is difficult. Converting the numbers into
the decimal notation makes it easier: 2021 � 1954 ¼ 67. The person is 67 years old,
or LXVII years old in Roman numerals. That is, MMXXI – MCMLIV ¼ LXVII.

Why is the decimal notation so much easier? Because it is a positional notation,
as illustrated in Fig. 5.5. The decimal number a ¼ a3a2a1a0.
a�1a�2a�3a�4 ¼ 2021.1954 has eight decimal digits. Two digits have identical
symbol 2. But, because of their different positions, they represent different values.
The leftmost 2 represents two thousands, and the second 2 represents two tens. Note

that the value of a is a ¼ P3

i¼�4
ai � 10i, where i is the index.

☶

2 0 2 1 . 1 9 5 4
3 2 1 0 -1 -2 -3 -4

digits

index

th
ou

sa
nd

s
hu

nd
re

ds
te

ns
on

es

Fig. 5.5 Explaining the
positional notation of
decimal number 2021.1954

5.2 Abstraction 193

Example 5.7. Other Positional Number Systems
In general, the value of a natural number a represented in a base-b, n-digit positional
notation is evaluated by

a ¼
Xn�1

i¼0 ai � bi

where digit ai takes a value from the digit set {0, 1, . . ., b-1}.
For binary notation, we have

a ¼
Xn�1

i¼0 ai � 2i

where digit ai takes a value in the digit set {0, 1}.
With a hexadecimal positional notation, we have

a ¼
Xn�1

i¼0 ai � 16i

where digit ai takes a value in the digit set {0, 1, . . ., 15}¼{0, 1, . . ., F}.
It is apparent that a particular positional number system is determined by three

things: its word-length n, its base b, and its digit set.
To more clearly understand the concept of positional number system, let us ask

some questions: What values are allowed for the base and the digit set? What is the
relation between the base and the digit set? It appears that the base should be a
positive integer k, and the digit set is {0, 1, . . ., k-1}. We have seen the cases for k ¼
2 (binary), 10 (decimal), and 16 (hexadecimal).

Can we have radically different positional number systems? Can we use
Fibonacci numbers? Can we use an irrational base?

The answers are YES. In 1957, George Bergman, then a 12-year junior high
school student, proposed to use {0, 1} as the digit set and the Golden ratio τ ¼
1þ ffiffiffi

5
p� �

=2� 1.6180339 as the base. He also showed how to do arithmetic in this τ
number system. Later work on Fibonacci Number System (FNS) showed how to
represent numbers using 0 and 1 as digits and Fibonacci numbers as positional
weights.

Table 5.2 contrasts these number systems with the more familiar decimal, hexa-
decimal, and binary number systems. For instance, the decimal number 14 has
hexadecimal and binary representations of E and 1110, respectively. With the τ
number system, 14 is represented as the following:

14 ¼ 100100:110110 ¼ τ5 þ τ2 þ τ�1 þ τ�2 þ τ�4 þ τ�5:

With the Fibonacci Number System (FNS), 14 is represented as follows:

194 5 Systems Thinking

14 ¼ 11001 ¼ 1� 8þ 1� 5þ 0� 3þ 0� 2þ 1� 1:

☶

5.2.2.2 Representing Real Numbers

From binary-decimal number conversion in Sect. 2.1, we already know that a real
number can be represented by using a pair of numbers, for the whole part and the
fraction part, respectively. For instance, π � 3.1415927 can be represented in binary
as 11.0010010000111111011011, after decimal-to-binary conversion.

What happens in reality is more sophisticated. Real numbers are represented in
computers as floating-point numbers. Similar to the scientific notation of numbers,
they use two fixed-point numbers for the exponent and the significant parts, respec-
tively. For instance, a possible floating-point representation for π is

π � 31415927� 10�7

where �7 is the exponent and 31415927 is the significant (also called mantissa).
The most widely used floating-point number representations are the IEEE

754 floating-point standard. The IEEE 754 32-bit format uses one bit (the leftmost
bit) for the sign, 8 bits for the exponent, and 23 bits for the significant. It can
represent π � 3.1415927 with a precision up to the seventh digit after the decimal
point. The IEEE 754 64-bit format uses one bit for the sign, 11 bits for the exponent,

Table 5.2 Decimal, hexadecimal, binary, tau, and Fibonacci number system representations

Decimal Hexadecimal Binary The τ number system FNS

101100 160 23222120 τ5τ4τ3τ2τ1τ0τ-1τ-2τ-3τ-4τ-5τ-6 8 5 3 2 1

0 0 0000 0 00000

1 1 0001 1 00001

2 2 0010 10.01 00010

3 3 0011 100.01 00100

4 4 0100 101.01 00101

5 5 0101 1000.1001 01000

6 6 0110 1010.0001 01001

7 7 0111 10000.0001 01010

8 8 1000 10001.0001 10000

9 9 1001 10010.0101 10001

10 A 1010 10100.0101 10010

11 B 1011 10101.0101 10100

12 C 1100 100000. 101001 10101

13 D 1101 100010.001001 11000

14 E 1110 100100.110110 11001
15 F 1111 100101.001001 11010

5.2 Abstraction 195

and 52 bits for the significant. It can represent π � 3.141592653589793 with a
precision up to the 15th digit after the decimal point. The 64-bit format doubles the
precision of the 32-bit format. Thus, the IEEE 754 32-bit format is also called the
single-precision format, and the 64-bit format called the double-precision format.

Let us look at the representation π � 31415927 � 10�7 more carefully. This
number could also be represented as π � 3.1415927 � 100 or π � 0.31415927 �
101. Such multiple representations of the same value may cause confusion.

We can achieve representation uniqueness with normalized significant, i.e.,
placing the binary point to the right of the leftmost non-zero bit of the significant.
Thus, π is uniquely represented as π� 1.10010010000111111011011� 200000001 in
binary notation, or π � 1.5707964 � 21. Since the left-most bit is always 1 for any
non-zero numbers, it can be omitted to save one bit of representation.

The IEEE 754 standard also uses biased exponent to enable fast exponent
comparison operation. That is, an exponent bias of 127 is added to the exponent
value for 32-bit representation, which is subtracted when interpreting a number’s
value. Thus, the exponent 00000001 becomes 1+127¼128, or 10000000 in binary
notation. The final IEEE 754 32-bit representation for π is shown in Fig. 5.6.
Similarly, the 64-bit representation for π is

01000000000010010010000111111011010101000100010000101101000
11000.

Besides normalized significant and biased exponent, the standard has several
additional clever designs, especially in representing and handling exceptions and
errors. Besides normal values, the IEEE 754 standard also includes representations
for not so normal floating-point numbers, such as positive and negative infinities
(�1), subnormal numbers (representing underflowing values), and Not a Number
values (NaNs, such as trying to find

ffiffiffiffiffiffiffi�5p
).

All the above systematic thinking helps ensure the algebraically completeness of
floating-point arithmetic, such that many arithmetic errors, one of which caused the
loss of an Ariane 5 rocket in 1996, could be avoided. Being a sophisticated
abstraction, IEEE 754 is widely used in smartphones, laptops, servers to supercom-
puters. Professor William Kahan was awarded the Turing Award for his fundamental
contributions to numerical analysis, such as embodied in IEEE 754.

π ≈ 3.1415927 100 ≈ 1.5707964 21

≈ +1.10010010000111111011011 200000001;
+ .10010010000111111011011 200000001; omit default left-most 1
+ .10010010000111111011011 210000000; add exponent bias 127

= 01000000010010010000111111011011; the IEEE 754 representation

Sign Exponent Significant

Fig. 5.6 Representation of π in IEEE 754 32-bit floating-point standard

196 5 Systems Thinking

5.2.2.3 Test If Two Floating-Point Numbers Are Equal

Table 1.2 already hints that in general, computer representations of integers and
characters are exact, but computer representations of real numbers, i.e., floating-
point numbers, are often approximate. Any computer has finite word lengths and
finite memory capacity. It cannot hold the exact value of a digital symbol that
requires an infinite number of bits, such as some real numbers.

The program in Fig. 5.7 generates the following seemingly inconsistent outputs:

> go run ./testPoint123.go
0.1+0.2 == 0.3
0.1+0.2 != 0.3
0.1+0.2 == 0.3
>

The code shows that it is a wrong way to use the double-equal operator “¼¼” to
compare two floating-point expressions. Instead, we should compare the absolute
difference against a small threshold value, e.g., j(X + Y) � Z j < 10�12.

package main
import "fmt"
import "math"
func main() {

if 0.1 + 0.2 == 0.3 {
fmt.Println("0.1+0.2 == 0.3")

} else {
fmt.Println("0.1+0.2 != 0.3")

}
X := 0.1 // var X float64 = 0.1
Y := 0.2
Z := 0.3
if X + Y == Z {

fmt.Println("0.1+0.2 == 0.3")
} else {

fmt.Println("0.1+0.2 != 0.3")
}
if math.Abs(X+Y - Z) < math.Pow(10, -12) {

fmt.Println("0.1+0.2 == 0.3")
} else {

fmt.Println("0.1+0.2 != 0.3")
}

}

Fig. 5.7 Code testPoint123.go illustrating the strange phenomenon: 0.1+0.2 !¼ 0.3

5.2 Abstraction 197

5.2.2.4 ASCII, Unicode, and UTF-8

ASCII is a US standard for encoding English text, covering 128 symbols. Unicode is
an international standard that encodes over 143,000 characters in 154 languages,
including over 70,000 Chinese characters, also known as CJK Unified Ideographs.
Unicode also encodes other symbols, such as format characters, control characters
and emoji symbols. A dominant implementation of Unicode is UTF-8 (8-bit
Unicode Transformation Format), which is capable of encoding all characters in
Unicode. By January 2020, 94.6% of character encodings for the websites world-
wide use UTF-8, while fewer than 0.1% use ASCII.

UTF-8 uses one to four bytes when encoding different character sets. The first
byte of UTF-8 (0X00 to 0X7F to be exact) has the same encodings as ASCII, as
shown in Table 5.3. Thus, only one byte is needed for an ASCII character. The
UTF-8 values for the 128 ASCII characters range from 0x00 for the NUL character
to 0X7F for the DEL character. On the other hand, a Gothic character needs four
bytes. Three bytes are needed for a Chinese character, also called Hanzi. For
instance, the Chinese character has a Unicode value of U+5FD7, and a UTF-8
value of 0XE5BF97 (3 bytes for E5 BF 97). For the Euro sign “€”, the Unicode value
is U+20AC and the UTF-8 value is 0XE282AC. For the Greek capital letter Omega
“Ω”, the Unicode value is U+03A9 and the UTF-8 value is 0XCEA9.

5.2.2.5 Review of Bit, Byte, Character, Integer, Array, and Slice

In Chaps. 1 and 2, we introduced the rudiment concepts of six data types: bit, byte,
character, integer, array, and slice. Here we put these data abstractions together in
one place, to better see their distinctions and differences. We pay special attention to
how these data abstractions are stored in memory and how they are represented when
printing out. The six data types are illustrated in Fig. 5.8.

A quick way to understand these data types is to execute the following program.

X := byte(63) // X is a byte variable
fmt.Printf("Decimal: %d\n", X) // Decimal: 63
fmt.Printf("Hex: %X\n", X) // Hex: 3F
fmt.Printf("Character: %c\n", X) // Character: ?

Table 5.3 ASCII, Unicode, and UTF-8 representations of five typical characters

Symbol Description ASCII Unicode UTF-8
Bytes needed by
UTF-8

T English capital letter T 0X54 U+0054 0X54 1

Ω Greek letter Omega N/A U+03A9 0XCEA9 2

€ The Euro sign N/A U+20AC 0XE282AC 3

A Chinese character N/A U+5FD7 0XE5BF97 3

� A Gothic letter N/A U
+10348

0XF0908D88 4

198 5 Systems Thinking

fmt.Printf("Binary: %b\n", X) // Binary: 111111
var S [5]byte = [5]byte{'h','e','l','l','o'} // S=[104, 101, 108,

108, 111]
var byteSlice []byte = S[1:4] // byteSlice=[101, 108, 108]
fmt.Println("array S = ", S) // Array S = [104 101 108 108 111]
fmt.Println("byteSlice = ", byteSlice) // byteSlice = [101 108 108]

Try to execute the same code and see what happens when “X ¼ byte(63)” is
replaced by “X ¼ 63” and “X ¼ 8364”. The meanings of variables for byte, int and
array are straightforward. The left-most bit is the sign bit in the int type.

The slice variable byteSlice is a data structure describing a section of an under-
lying array (S[1], S[2], S[3]), i.e., the array section S[1:4] starting at index 1 and has
a length of 3. Note that S[4] is not part of S[1:4].

Slices can also be created with the built-in make function. The function call

make([]int, n+1)

allocates an array of length n+1 and returns a slice that refers to that array. All
elements of the array are type int and initially set to zero.

Note that we only use four data types in the Go language practices, i.e., byte, int,
array and slice. So how to treat character and bit? Two practices follow.

• A character such as the question mark ‘?’ is represented as a byte value 00111111,
which is equivalent to an 8-bit unsigned integer 00111111¼63. The two data
types byte and uint8 are equivalent.

• To operate on a bit, we can operate on a byte or an integer containing that bit.

A byte variable X
by X:=byte(63)

An int variable X
generated by X:=63

An array S generated
by var S [5]byte =
[5]byte{'h','e','l','l','o'}

A slice byteSlice
generated from array S
var byteSlice []byte = S[1:4]

0 0 1 1 1 1 1 1
27 26 25 24 23 22 21 20

0 0 …… 0 0 1 1 1 1 1 1
± 262 …… 27 26 25 24 23 22 21 20

digits

positional
weights

digits

positional
weights

elements

index 0 1 2 3 4

104 101

3byteSlice

LengthName Pointer

108 108 111

Fig. 5.8 Differences among byte, int, array, and slice

5.2 Abstraction 199

Example 5.8. Inverting the Least Significant Bit of a Byte
Suppose we want to invert the least significant bit (the right-most bit) of a byte
00111111, to obtain 00111110. We cannot directly do it with one operation but need
a sequence of operations such as the following:

x := byte(63) // assign 6310=001111112 to variable x
v := ^x // bitwise NOT of x, i.e., v=11000000
v = v & 0x1 // bitwise AND to retain the right-most bit of v, i.e.,

v= 11000000 & 00000001
x = x & 0xFC // bitwise AND to clear the right-most bit of x, i.e.,

x= 00111111 & 11111110
x = x | v // bitwise OR to invert the last bit of x, i.e.,

x=00111110 | 00000000=00111110

Let us use a sequence of equations to show how the above code works. To invert
the least significant bit of 00111111, the code executes as follows:

x = 00111111 Given input

v = 0 0 1 1 1 1 1 1 = 11000000 Bitwise NOT

v = 11000000 & 00000001 = 00000000 Bitwise AND

x = 00111111 & 11111110 = 00111110 Bitwise AND

x = 00111110 | 00000000 = 00111110 Bitwise OR

☶

Example 5.9. Replacing the Least Significant 2 Bits of a Byte
Suppose we want to replace the least significant 2 bits of a byte 00111111, with the
least significant 2 bits of another byte 00101010, to obtain 00111110. We can realize
this with the following sequence of operations:

x := byte(63) // assign 6310=001111112 to variable x
v := byte(42) // assign 4210=001010102 to variable v
v = v & 0x3 // bitwise AND to retain the right-most 2 bits of v, i.e.,

v= 00101010 & 00000011 = 00000010
x = x & 0xFE // bitwise AND to clear the right-most 2 bits of x, i.e.,

x= 00111111 & 11111100 = 00111100
x = x | v // bitwise OR to replace the last 2 bits of x, i.e.,

x=00111100 | 00000010 = 00111110

The above code replaces the least significant 2 bits of variable x with the least
significant 2 bits of variable v. This becomes clearer with the following sequence of
equations to show how the above code works step by step.

x = 00111111 Given input
v = 00101010 Given input
v = 00101010 & 00000011 = 00000010 Bitwise AND
x = 00111111 & 11111100 = 00111100 Bitwise AND
x = 00111100 | 00000010 = 00111110 Bitwise OR

☶

200 5 Systems Thinking

5.2.2.6 Pointers and Addressing Modes

The array data type, such as var a [100]int, has an obvious advantage: it is a simple
linear arrangement of 100 integers consecutively stored in memory, and an array
element a[i] can be referenced by index i. Computer scientists realized a fact about
data structure and data layout in memory: although the linear arrangement of an
array is easy to understand and operate, allowing nonlinear arrangements, i.e., the
elements can jump around, brings flexibility.

Such nonlinear arrangements are realized by a basic mechanism called pointers,
which is implemented by the indirect addressing mode provided by hardware. A
pointer holds the address of a value, not the value itself.

We already encountered several addressing modes, such as base+index+offset in
Chap. 2. Three addressing modes are compared below:

• Immediate mode:
MOV 50, R1; assign the immediate value 50 to R1

• Direct mode:

MOV M[50], R1; assign M[50] to R1
• Indirect mode:

MOV M[M[50]], R1; assign M[M[50]] to R1

Registers are regarded as special memory cells.
In a high-level language such as Go, an ordinary variable holds a value, such as an

integer or a byte value. A pointer variable holds the address of a variable.

Example 5.10. Contrasting a Pointer Variable to an Ordinary Variable
Figure 5.9 contrasts a normal variable b and pointer variable p.

Any variable has three attributes: a name, a data type, and a value. When a
program is compiled to execute, the variable name is bound to a memory address,
called the variable’s address, which can be obtained with the ‘&’ operator.

For instance, after the following declaration statement

var b bool = true

we have a variable named b of Boolean type, with an initial value of true.
The asterisk ‘*’ symbol is used in a declaration statement to declare a pointer

variable:

var p *bool = &b

Here, the pointer variable is named p, which points to a value of Boolean type,
with an initial value as the address of b, which happens to be 0xc042058058.

The asterisk ‘*’ symbol is also used in an expression as a dereference operator, to
obtain the value at the address pointed to by a pointer variable.

5.2 Abstraction 201

For instance, p in an expression denotes the address of b, i.e., 0xc042058058. But
*p denotes the value of b, i.e., the value at address 0xc042058058, which is
initially true.

Memory cell 1
0x0

0x1

0xc042058058

0xc042078018

4G-1

package main
import "fmt"
func main() {

b := true // Boolean variable b
p := & b // p holds b’s address
fmt.Println(p) // Print b's address
fmt.Println(*p) // Print b's value
*p = false // Modify b's value
fmt.Println(b) // Print b's value
*p = !(*p) // Use and modify b's value by negation
fmt.Println(b)

}

> go run ./pointer.go
0xc042058058
true
false
true
>

(a)

(b) (c)

……
0x1 (true)

……
0xc04205805

……

b

p

Memory cell 4G-1, last byte

Variable p, pointer type

Variable b, type bool

Memory cell 0, first byte

(d)

Fig. 5.9 Illustration of the pointer concept. (a) Source code pointer.go. (b) Screen display. (c)
Diagram showing that p points to b. (d) Memory layout in a 4-GB byte addressable memory

202 5 Systems Thinking

It is left as an exercise to print out the address of p. We can declare another pointer
variable q to point to pointer variable p.

☶

Example 5.11. Computing Fibonacci Numbers of Arbitrary Word Length
The fib.dp.big.go program introduced in Example 1.6 computes Fibonacci number F
(n) for arbitrarily big integer n, using the dynamic programming method. A new
integer data type big.Int from the math/big package is used to handle representation
and arithmetic operations of big integers. However, the code is mostly provided by
the Go libraries. It is powerful but has too many details for beginners to understand.

We use a simplified program fib.Uint.go to see how big integers are handled. This
program is self-contained, and does not use the math/big package provided by the
Go language. This fib.Uint.go program contains the definition of a new data type
Uint, which is a slice of 64-bit unsigned integers, to represent an unsigned integer of
arbitrarily big word length. An accumulator function Acc is defined to do a ¼ a +
b. A String function is defined for converting an unsigned integer into a string of
decimal digits, to be printed out by fmt.Printf.

We focus on the fibonacci function definition. After the first two statements:

a = &Uint{0}
b = &Uint{1}

the program creates in memory the following two structures for variables a and b.

0

1

(*a)[0]

a
Addr Len

1

1

(*b)[0]

b
Addr Len

Uint Uint{0}

The data type Uint is a slice structure with two fields. One field holds the length.
The other field holds the address pointing to the array of 64-bit unsigned integers.
The notation Uint{0} denotes a slice of length 1, i.e., the array has one element
holding the initial value of 0. The statement a¼&Uint{0} assigns the address of Uint
{0} to a. That is, a is a pointer variable holding the address of Uint{0}. Thus, the one
element of the array is denoted by (*a)[0].

Two pointer variables a and b represent two unsigned integers of arbitrary length,
where each unsigned integer is implemented by a slice of unsigned integers.

Let us look at the loop in Fig. 5.10a. Assume i is 1. The Acc(a, b) function realizes
an accumulative addition a ¼ a + b ¼ 0 + 1 ¼ 1. After the Acc(a, b) statement is
executed, the memory contents change to the following configuration.

5.2 Abstraction 203

https://doi.org/10.1007/978-981-16-3848-0_1#FPar7

1

1

(*a)[0]

a
Addr Len

1

1

(*b)[0]

b
Addr Len

Addr1 Addr2

The a,b¼b,a statement exchanges a and b to make sure that a is always the smaller
of a and b. After the a,b¼b,a statement is executed, the new memory configuration
follows.

(a)

package main
import (

"fmt"
"math"

)
func main() {

fmt.Printf("F(100) = %s\n", String(*(fibonacci(100))))
}
type Uint []uint64
func fibonacci(n int) *Uint {

a := &Uint{0} // a = 0
b := &Uint{1} // b = 1
for i := 1; i < n+1; i++ {

Acc(a, b) //a = a + b
a, b = b, a

}
return a

}
// Code defining Acc and String functions

> go run fib.Uint.go
F(100) = 354224848179261915075
>

(b)

Fig. 5.10 Program fib.Uint.go and its output. (a) Source code of program fib.Uint.go. (b) Output
by executing program fib.Uint.go

204 5 Systems Thinking

1

1

(*a)[0]

a
Addr Len

1

1

(*b)[0]

b
Addr Len

Addr2 Addr1

Assume i ¼2. After the Acc(a, b) statement is executed, the memory contents
change to the following configuration.

2

1

(*a)[0]

a

Addr Len

1

1

(*b)[0]

b

Addr Len

Addr2 Addr1

After the a,b¼b,a statement is executed, the new memory configuration follows.

1

1

(*a)[0]

a

Addr Len

2

1

(*b)[0]

b

Addr Len

Addr1 Addr2

Now assume i¼93. This is the first time that the overflow occurs if we use a single
64-bit unsigned integer. After Acc(a, b) is executed, the memory becomes:

1293530146158671551

2

(*a)[0] (*a)[1]

a

Addr Len

12200160415121876738

1

(*b)[0]

b

Addr Len

Addr1

Addr2

1

5.2 Abstraction 205

We avoid the overflow, which becomes a carry value into the second word, i.e.,
(*a)[1], of the slice of unsigned integers. Note that (*a)[1]¼1 denotes 264. Change
100 to 93 in the program fib.Uint.go and see that it correctly outputs

F(93) ¼ 12200160415121876738 and F(94) ¼ 19740274219868223167.

☶

5.2.2.7 The File Abstraction

Files are used to organize and persistently store chunks of information. Here,
persistence means files still exit when electrical power is turned off on a computer.
A program reads a file from the hard disk into the memory for processing, and stores
the modified results into the hard disk.

Files are stored in a file system of a computer. A file system organizes ordinary
files and directories in a tree. A directory is a special file that contains other files.
Each file, either an ordinary file or a directory, has a file name. Parts of the tree of file
names of an example file system is shown in Fig. 5.11 and Table 5.4.

The absolute file name starts from the root directory “/” and goes down the tree,
adding a slash “/” at each level. Each file has a unique absolute name. The file ucas.
bmp has the absolute name /cs101/Prj2/ucas.bmp.

Let us look at Fig. 5.11 and Table 5.4 more carefully. When a user logs into a
computer, she/he is automatically at a system-specified default directory, called the
home directory. The directory in which the user is currently working is called the
current directory or working directory. A pwd (Print Working Directory) com-
mand is used to print out the current directory.

Assume the user is at the home directory /cs101/, but wants to work in the
working directory /cs101/Prj2/, which contains files for the second project. The

// root directory

math101/
cs101/

physics101/

Prj2/ Prj3/ Prj4/

hamlet.txt ucas.bmp doctoredUCAS.bmp

Richard_Karp.txt Autumn.bmp doctoredAutumn.bmp

Prj1/

hide-0.go

Fig. 5.11 An example tree of files and directories

206 5 Systems Thinking

user can execute the change directory command “cd Prj2” to change the current
directory to /cs101/Prj2/. The sequence of screen printouts follows.

The user logs into a computer
>pwd //the current directory is the home directory
/cs101/
>cd Prj2 //change to directory /cs101/Prj2
>pwd
/cs101/Prj2

Once in directory /cs101/Prj2/, the user can access all the seven files there using
their shorter relative file names. When the current directory is /cs101/Prj2/, the
following three names identify the same image file, and all three commands display
the same image. A file name is also called a path or a path name.

>display Autumn.bmp
>display ./Autumn.bmp
>display /cs101/Prj2/Autumn.bmp

A file contains data and metadata. Data is the bits for the actual information
provided by the file. Metadata is data about data, which provides additional infor-
mation, such as the format and organization of data, the file name, the file size, the
access permissions, the time of creation, etc. For instance, Autumn.bmp is a file
containing 9144630 bytes and organized as shown in Fig. 5.12, where Pixel Array
contains data, while BMP File Header and BMP Info Header contain metadata.

Such a BMP (bitmap) image file stores an image as an array of pixels. A pixel
(picture element) represents a point of an image by three color depth values for the
primary colors of red, green, and blue. Each color depth value of the RGB colors is
represented as a number of uint8 byte type. Thus, each pixel needs three bytes.

A BMP image file’s metadata includes information on the starting places and the
sizes of various parts of the image, e.g., the width and the height of the image. Note

Table 5.4 Typical directories and files

Typical directory and files Absolute path name Relative file name

Root directory /

Home directory /cs101/

Current directory ./

Parent directory ../

Program file to hide text in image /cs101/Prj2/hide-0.go hide-0.go

A text file /cs101/Prj2/Richard_Karp.txt Richard_Karp.txt

Another text file /cs101/Prj2/hamlet.txt hamlet.txt

An image file /cs101/Prj2/ucas.bmp ucas.bmp

A doctored image file /cs101/Prj2/doctoredUCAS.bmp doctoredUCAS.bmp

Another image file /cs101/Prj2/Autumn.bmp Autumn.bmp

Another doctored image file /cs101/Prj2/doctoredAutumn.bmp doctoredAutumn.bmp

5.2 Abstraction 207

that the first 54 byte-level addresses are used for metadata. The pixel array for actual
image data starts at address 54. The first pixel uses addresses 54, 55, and 56 to store
its three RGB color depth values.

The black color is represented when the RGB values are set to (0, 0, 0), that is,
when color depth values are all zero. Similarly, the white color is represented when
the RGB values are set to (255,255,255), and the red color is represented when the
RGB values are set to (255, 0, 0).

Example 5.12. Hide Text in a Picture by Doctoring the Image File
Let us appreciate the file abstraction in more details by hiding hamlet.txt in Autumn.
bmp. That is, we doctor Autumn.bmp such that the content of the text file hamlet.txt
are hidden in the picture of the image file Autumn.bmp.

• A careless hiding program will result in a doctored image that is visibly different
from the original image, as shown in Fig. 5.13.

• A carefully designed hiding program will result in a doctored image that looks the
same as the original image, as is shown in Fig. 5.14.

BMP File Header

BMP Info Header

Pixel Array

0
1

…
13
14
15
…
53
54
55
56
…

Fig. 5.12 Organization of
data and metadata in a BMP
image file

Fig. 5.13 Failure to hide text in a picture: the doctored image (the right picture) obviously differs
from the original image (the left picture). (Photo credit: Chundian Li)

208 5 Systems Thinking

This information hiding process is realized by the following algorithm, assuming
the bmp file format of Fig. 5.12. The corresponding Go program is hide-0.go.

• Input: A text file hamlet.txt and an image file Autumn.bmp.
• Output: A doctored image file doctoredAutumn.bmp
• Steps:

1. Read Autumn.bmp into variable p // p for picture
2. Read hamlet.txt into variable t // t for text
3. Hide the length of hamlet.txt in the first 32 bytes of the Pixel Array
4. Hide hamlet.txt in variable p in the remaining bytes of the Pixel Array
5. Write p to file doctoredAutumn.bmp

We now discuss how to develop a program hide-0.go to realize this algorithm. All
information is hidden in the Pixel Array, not in the metadata area. Every byte of
information is hidden in 4 consecutive bytes of Pixel Array, such that only the least
significant two bits of each byte of Pixel Array are modified.

Note that variable p is a slice of bytes. Pixel Array starts at address 54. That is, p
[54:] holds the Pixel Array, and p[0:54] holds the metadata information.

To read the image file Autumn.bmp into variable p, the program executes

p, _ = ioutil.ReadFile("./Autumn.bmp").

The function ioutil.ReadFile is provided by Golang in the package “io/ioutil”. It
accepts a text string of file name and returns the file contents as a byte slice. A
Golang function call can return multiple values. If any value is no concern to us, we
use an underscore “_” symbol as a placeholder.

Fig. 5.14 Successfully hiding text in a picture: the doctored image (the right picture) shows no
difference from the original image (the left picture). (Photo credit: Chundian Li)

5.2 Abstraction 209

Similarly, the contents of the text file hamlet.txt are read into a byte slice variable t
by executing the following statement.

t, _ := ioutil.ReadFile("./hamlet.txt")

Modified contents of variable p are written to file doctoredAutumn.bmp by
executing the following statement

ioutil.WriteFile("./doctoredAutumn.bmp", p, 0666)

where 0666 specifies the access permissions for file doctoredAutumn.bmp,
according to the format of Table 5.5. The leading 0 bit indicates that this file is an
ordinary file. A directory file should have a leading 1 bit.

The above WriteFile function call says that variable p is written to file
doctoredAutumn.bmp. Being a new file, doctoredAutumn.bmp needs to be created
first. The access permissions 666¼110110110 says that the file’s owner, the group
which the owner belongs to, and other users have the rights to read and write the file.
But, no user can access the file for execution. Using the shell command “ls -l”, we
can see the read-write-execute permissions listed as follows:

>ls -l doctoredAutumn.bmp
-rw-rw-rw- . . . doctoredAutumn.bmp
>

Now let us go through the process of modifying variable p. This is done by
repetitively calling a user-defined function modify(txt int, pix []byte, size int). The
function saves an integer value txt into a byte slice variable pix, 2 bits at a time, for a
total of size iterations.

func modify(txt int, pix []byte, size int) {
for i := 0; i < size; i++ {

replace last 2 bits of pix[i] with the last 2 bits of txt
// the next iteration repeats with the next 2 bits of txt

}
}

For instance, to hide character ‘H’ in p[86:90], we call modify(72, p[86:90], 4),
and we have: txt is ‘H’¼ 72¼ 01001000; pix is p[86:90]; size is 4. The loop body is
executed 4 times, and p[86:90] is modified as follows.

Table 5.5 File access per-
missions (r: read; w: write; x:
execute)

Owner Group Others

r w x r w x r w x

1 1 0 1 1 0 1 1 0

210 5 Systems Thinking

To hide hamlet.txt in Autumn.bmp and generate doctoredAutumn.bmp, we need
to first save the length of the text file hamlet.txt, and then save the contents of hamlet.
txt. This is illustrated in Fig. 5.15. The length needs to be saved in case we want to
recover the text file from doctoredAutumn.bmp. This is done by executing

modify(len(t), p[S:S+T], T)

where S is the starting address of the pixel array, 54; and T is the length of the text
file to be hidden. We assume the length len(t) is a 64-bit integer. Each byte of pixel

Fig. 5.15 Illustration of how the length and the first character ‘H’ of hamlet.txt are hidden

5.2 Abstraction 211

array can hide 2 bits. Thus, to hide len(t) we need 64/2¼32 bytes of Pixel Array. In
other words, when T¼32, slice p[54:86] is used for hiding len(t).

To hide the contents of hamlet.txt, we execute the following loop:

for i:=0; i<len(t); i++{
offset := S+T+(i*4)
modify(int(t[i]), p[offset:offset+C], C)

}

where each iteration of the loop body hides one character in four bytes of p at proper
addresses. The first character of hamlet.txt is t[0]¼'H', which is hidden in p[86:90].
The second character is t[1]¼'A', hidden in p[90:94]. The third character is t[2]¼'M',
hidden in p[94:98].

☶

5.2.3 Control Abstractions

Five control abstractions are common in a high-level language program. Most of
them are intuitive. We only elaborate loop and function.

• Precedence in an expression. For instance, in expression x*b+c || i < 7, the
precedence ordering is ((x*b)+c) || (i < 7). When in doubt, use parentheses.

• Sequencing. By default, a sequence of statements is executed by the syntactic
ordering of the sequence, one statement after another.

• Selection. An if-then-else statement, also called conditional. An example is

if i<7 {
fmt.Println(i)

}

• Loop iteration. A loop repetitively executes a body of code. Each repetition is
called an iteration. The body of code is called the loop body.

• Function. A function is defined once and can be called many times.

The following for loop statement sums the elements of an array.

for i := 0; i < n; i++ {
sum = sum + x[i]

}

This loop statement has four parts, as shown in Fig. 5.16. The init statement i¼0
sets the initial value of index i. The loop then checks the condition expression i < n. If
false, the loop finishes. If true, executes the loop body, and then execute the post
statement i++. After an iteration, the loop repeats by checking the condition again.

212 5 Systems Thinking

A function is a sub-program to be called by other statements in a program. A
function definition starts with the keyword func and has four parts, as shown in
Fig. 5.17: (1) a function name fibonacci, (2) an input parameter n of type int, (3) the
type int of the function’s return value, and (4) a function body enclosed between {
and }.

This fibonacci function call appears three times in Fig. 5.17.
When a statement in a program calls a function, the execution environment

(called context) is first saved before the program executes the function body, so
that when the function returns, the program can resume execution with a proper
context.

The operating system of a computer divides the memory space of the program
(a process) into four segments, called text, data, stack, and heap, to hold program’s
code, static data variables and constants, function calls, and dynamic data, respec-
tively. The context of a function call is saved in the stack segment (Fig. 5.18).

No

for i := 0; i < n; i++ {

sum = sum + x[i]

}

init statement

condition expression

post statement

loop body

i:=0

sum = sum + x[i]

Yes

i++

i < n

Fig. 5.16 Illustration of a loop statement: its four parts and its control flow

func fibonacci(n int) int {
if n == 0 || n == 1 {

return n
}

}
…

function body

function name parameter type of return value

function call

return fibonacci(n-1)+fibonacci(n-2)

fmt.Println("F(50)=", fibonacci(50))

Fig. 5.17 A function is defined once and called three times in the above code

5.2 Abstraction 213

5.3 Modularization

The divide-and-conquer methodology is discussed in algorithmic thinking. There is
a similar methodology in systems thinking, called modularization. It has two facets:
(1) dividing a system into multiple modules, and (2) composing modules into a
higher-level abstraction, also known as system. When discussing modularization,
the following points are noteworthy:

• Two modules may be interconnected, but they normally do not overlap.
• Modularization is a special form of abstraction where the information hiding

principle is followed.
• Modularization, i.e., how to divide and compose a system, is an art, needing

human imagination and creativity.

This section uses a number of progressively more complex examples to demon-
strate modularization. Most examples are from the computer hardware.

5.3.1 Combinational Circuits

Combinational circuits are logic circuits using gates to realize propositional logic
expressions. Figure 5.19 shows four gates realizing the four basic Boolean operators:
AND, OR, NOT, and XOR.

Other gates can be realized by such basic gates. In reality, some basic gates are
directly implemented by semiconductor circuitry. Figure 5.20 shows how a 2-input
NAND gate is realized by a 4-transistor CMOS circuitry, where CMOS stands for
Complementary Metal Oxide Semiconductor.

When X and Y are both at HIGH voltage level (logic 1), the lower two transistors
are both ON and the upper two complementary transistors are both OFF. The output
Z is connected to the ground (Vss) at LOW voltage level (logic 0). For any other

Stack

Heap

Data

Text

Holds the context of function calls,
growing downwards

Holds dynamic data, growing upwards

Holds static data

Holds the code of the process

Fig. 5.18 Memory layout
of the Text, Data, Stack, and
Heap segments of a program
(process)

214 5 Systems Thinking

configuration, the output Z is connected to Vdd and thus at HIGH voltage level
(logic 1). The CMOS semiconductor circuitry realizes a NAND gate.

The NAND gate is an abstraction with the COG properties:

• It is constrained by focusing on the Boolean logic functionality, ignoring details
such as the voltage levels, number of transistors, power consumption, etc.

• It is objective. Its functionality is precisely defined by its truth table.
• It is generalizable. Its functionality can be implemented by a circuit other than the

4-transistor CMOS circuit.

In addition, the NAND gate symbol is much simpler than the 4-transistor CMOS
circuit. It embodies the information-hiding principle: a module only exposes its
interface and visible behaviors, but hides internal details and internal behavior. This
is further illustrated in Fig. 5.21, which shows three equivalent representations of a
combinational circuit: a Boolean expression, a logic circuit, and a CMOS circuit.
The Boolean expression and the logic circuit hide the details of the CMOS circuit,
and are much simpler.

X
Y

Z

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

X
Y

Z

X Y Z

0 0 0

0 1 1

1 0 1

1 1 0

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

X Z

0 1

1 0

ZX X
Y Z

Fig. 5.19 Symbols of four basic gates AND, OR, NOT, and XOR, and their truth tables

X
Y Z

X Y Z

0 0 1

0 1 1

1 0 1

1 1 0

X Y

Y

X

Z

Vdd

Vss

Gate

Source

Drain

Fig. 5.20 NAND gate: truth table, symbol, and a CMOS implementation. Also shown are the three
terminals of a transistor: source, drain, and gate

5.3 Modularization 215

5.3.1.1 Various Adders

In this UKA unit, students are shown several examples to see how to compose logic
gates into various systems to do addition. Then as an exercise, students are asked to
design a subtractor. Assume X and Y are unsigned integers, we want to compute Z¼
X + Y using gates.

Example 5.13. Full Adder and Ripple-Carry Adder
A very simple adder is a 1-bit adder, called full adder. The “full” here means that it
considers also the carry-in and the carry-out bits, in addition to the two addend
bits X, Y and the resulting sum bit Z. Figure 5.22 shows the full-adder symbol and its
implementing logic circuit. Students are asked to verify that the correct Boolean
expressions for the twooutputs areZ¼X

L
Y
L

Cin andCout¼ (X ∙Y) + (X
L

Y) ∙Cin,
respectively.

We can form an n-bit adder by cascading n full adders, as shown below for n¼4
(Fig. 5.23).

☶

W

X
Y ZA B

X Y

Y

X

Vdd

Vss

W

W

Z

Vdd

Vss

Fig. 5.21 A combinational circuit: Boolean expression, logic diagram, and CMOS circuit diagram

Full
Adder

YX

Cout Cin

Z

X Y

Z

Cin

Cout

Fig. 5.22 Full adder:
symbol and logic circuit
diagram

216 5 Systems Thinking

Example 5.14. A Faster Adder
A ripple-carry adder serially generates the carry bits and the sum bits. A more
efficient adder generates the carry and the sum bits in parallel. Such a 4-bit parallel
adder is shown below, which computes X+Y¼1011+1001 ¼ 10100, with an
overflowing carry bit of C4¼1. The trick is to compute all carry bits in parallel.
The overflowing carry bit C4 does not depend on lower carry bits any more
(Fig. 5.24).

☶

Example 5.15. An Adder-Subtractor Controlled by Multiplexers
The arithmetic-logic unit (ALU) of a processor supports many operations, not just
the addition. How does it do that? By using control circuitry to select which
operation to perform. The simplest control circuit is the 2-to-1 multiplexer in
Fig. 5.25. The trapezoid is the multiplexer symbol, which selects one of the two
input values X and Y as the output value Z, based on the selection value S. In other
words, the multiplexer implements Z ¼ S ∙Y þ �S ∙X.

Figure 5.26 shows a 4-bit adder-subtractor designed using four multiplexers. The
circuit is easy to understand by noting that subtracting Y from X, i.e., X � Y, is
equivalent to adding the two’s complement of Y to X, i.e., X + (�Y). For instance,

5-5¼5+(-5)! 0101þ �0 �1 �0 �1þ 0001ð Þ ¼0101+1011¼10000.
☶

5.3.2 Sequential Circuits

Compared to combinational circuits, sequential circuits have one more type of
components: state circuits. Thus, sequential circuit = combinational circuit +
state circuit. With states, a system can execute multi-step computational processes.
Each step computes two types of values: the current output values and the next state
values. Both are computed from the current input values and the current state values.

States in hardware circuits are implemented by two types of basic circuits:
(1) memory cells, and (2) flip-flops, also known as latches, which are logic circuits
with feedback wires. Many sequential circuits use flip-flops to hold state values.

Full
AdderC4

X3 Y3

Z3

Full
Adder

X2 Y2

Z2

Full
Adder

X1 Y1

Z1

Full
Adder C0

X0 Y0

Z0

C1C2C3

Fig. 5.23 A ripple-carry adder by cascading 4 full adders to form a 4-bit adder

5.3 Modularization 217

5.3.2.1 Various Types of Memory Cells

Four terms are often used for memory technology: DRAM, SRAM, NVM, ROM.

• Volatile memory means its contents are lost when power is turned off. Volatile
memory is usually faster than non-volatile memory (NVM). There are two
common types of volatile memory: DRAM and SRAM.

• Non-volatile memory means its contents are kept even when power is turned off.
There are two common types of non-volatile memory: read-only memory (ROM)
and read-write NVM.

(a)

X3=1 C3=0

Y3=1

X2=0 C2=1

Y2=0

X1=1 C1=1
Y1=0

X0=1 C0=0

Y0=1

Z3=0 Z2=1 Z1=0 Z0=0

Output: Z3Z2Z1Z0=0100

Input: X3X2X1X0=1011, Y3Y2Y1Y0=1001, C3C2C1C0=0110

(b)

C4=1

G3=1 G2=0 G1=0 G0=1 P3=1 P2=0 P1=1 P0=1

C3=0 C2=1 C1=1

C0

Input: X3X2X1X0=1011
Y3Y2Y1Y0=1001
C0=0

X3Y3 X2Y2 X1Y1 X0Y0

Output: C4C3C2C1=1011

Fig. 5.24 A faster adder with parallel computing of carry bits. (a) Circuit to compute carry bits in
parallel. (b) Circuit to compute sum bits in parallel

218 5 Systems Thinking

A DRAM (dynamic random access memory) cell consists of a transistor and a
capacitor and represents the state as the charge on the capacitor. This simplicity
makes it inexpensive. However, capacitor leaks electricity. Thus, DRAM needs to
constantly refresh its contents, once every 7.8–128 μs.

An SRAM (static random access memory) cell consists of six transistors. It is
more expensive than DRAM but much faster. When the word line W is on, the bit
line B is connected to the state Q to read or write. Suppose we want to write a 1 to the
cell. Then B is set to 1, which causes Q to be HIGH (1) and the left-lower transistor
to be on, turning �Q to be LOW (0) (Fig. 5.27).

Read-only memory (ROM) often hardwires its contents into the memory hard-
ware, thus does not lose its contents. The downside is that it cannot be written again.
When the computer power is turned on, the computer usually fetches its first
instruction from some ROM devices. Read-write NVM devices can be written
again. A common example is the flash memory in a student’s USB memory stick,
also known as the USB flash drive or USB thumb drive.

MUX

X Y

S

Z

S Z
0 X

1 Y

S X Y Z

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Fig. 5.25 A 2-to-1
multiplexer: truth table,
symbol, simplified truth
table

4-bit Adder 4-bit AdderC0C4

Z3 Z2 Z1 Z0

X3 Y3 X2 Y2 X1 Y1 X0 Y0

C4

Z3 Z2 Z1 Z0

X3 X2 X1 X0

Y3 Y2 Y1 Y0

S

Fig. 5.26 A 4-bit adder and a 4-bit adder-subtractor, both in two’s complement representation

5.3 Modularization 219

5.3.2.2 A Logic Circuit with Feedbacks: The Delay Flip-Flop

In logic thinking, we try to avoid circular reasoning such as the barber paradox. But
it turns out that adding feedback wires to a normal combinational circuit provides a
new capability: now logic circuits can support states. Such circuits are called flip
flops. We show below a D flip-flop, for delay flip-flop, which is widely used in
computer circuits.

The D flip-flop is implemented with four NAND gates, with three feedback wires
that are absent in normal combinational circuits. Its behavior is characterized by its
truth table. When the Enable signal E is OFF (0), the D flip-flop maintains its state,
that is, Qnext ¼ Q. When the Enable signal E is ON (1), the D flip-flop changes its
state to the D input value, that is, Qnext ¼ D.

In practice, the system clock signal is often used for the Enable signal E. The
clock signal, often written as CLK, is a special signal that alternates its value
between LOW (0) and HIGH (1). Each cycle of 0 and 1 is called a clock cycle.
The number of clock cycles in a second is called the clock frequency. Suppose a
computer’s processor (CPU) has a clock frequency of 3 GHz, i.e., 3 giga cycles per
second. This translates to a clock cycle of 1/(3 GHz) ¼ 0.33 ns.

Let us look at the behavior of a D flip-flop during a clock cycle, when E is
replaced by CLK. When CLK¼0, the D flip-flop maintains its state. When CLK¼1,
the D flip-flop changes its state to the value of D. Thus, after one clock cycle, the
state Q of the D flip-flop changes its value to that of D. This behavior is why the flip-
flop is called the delay flip-flop: its state output value delays one clock cycle from the
input value D (Fig. 5.28).

5.3.2.3 A General Organization of Sequential Circuits

Any sequential circuit can be organized as shown in Fig. 5.29. It is a circuit
comprised of three sub-circuits. The state circuit consists of one or more D flip-
flops, where each flip-flop can hold one bit of state. The combinational circuit F

Word Line

Bit Line

B

Q

Vss Vss

Vdd

W

Q

B

Fig. 5.27 A DRAM cell (left) and an SRAM cell (right) for storing one bit of state

220 5 Systems Thinking

generates the current output value Out(t) from the current input value In(t) and the
current state value State(t). The combinational circuit G generates the next state
value State(t+1) from the current input value In(t) and the current state value State(t).
In equation form, we have

• Out(t) ¼ F(In(t), State(t))
• State(t+1) ¼ G(In(t), State(t))

Designing a sequential circuit (let’s call it the system) can follow this simple
procedure: (1) find out the number n of bits needed for holding the system’s states,
and then use n D flip-flops to form the state circuit; (2) according to the system’s
requirements, design the combinational circuits F and G.

5.3.2.4 Serial Adder and Subtractor

This UKA unit asks students to go through the multiple steps of a serial addition
process, to see how to design a sequential circuit and how a sequential circuit works.
In each step, this 4-bit adder does a 1-bit full addition. Then as exercises, students are
asked to design a 4-bit serial subtractor and an n-bit serial subtractor.

Example 5.16. A 4-Bit Serial Adder
Design a 4-bit serial adder of unsigned integers, which implements

E

D
Q D Q

E
D Flip Flop

E D Q Qnext

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Fig. 5.28 The D flip-flop: its truth table, gates implementation, and symbol

Combinational
Circuit G

State
Circuit

Combinational
Circuit FIn(t) State(t)

Out(t)CLK

State(t+1)

Fig. 5.29 A typical organization of sequential circuits

5.3 Modularization 221

Z3Z2Z1Z0 ¼ X3X2X1X0 þ Y3Y2Y1Y0

in 4 steps, where each step does a 1-bit full addition. Verify the correctness of the
design by executing the following addition

1110 + 910 ¼ 10112 + 10012 ¼ 101002 ¼ 2010 ¼ 410 and overflow.

To design a sequential circuit, the first question to ask is: how many bits of the
state the sequential circuit should have? It turns out that we can use the state to
denote the current carry bit. Doing a binary addition serially, i.e., one bit at a time,
we only have one carry bit to remember. Thus, we only need one D flip-flop to hold
one bit of state, which can have two state values, q0 and q1, to denote the current
carry value to be 0 and 1, respectively.

From the semantics of the binary addition of unsigned integers, we can derive a
state-transition table and the equivalent state transition diagram of the automaton for
the 4-bit serial adder, as shown in Fig. 5.30. Note that X, Y, Z, Q, and Qnext denote
the current bits of the input X, the input Y, the output Z, the state, and the next state,
respectively. The notation XY/Z attached to an arrow needs a couple of examples to
explain. 01/1 says that in state q0, if XY¼01, then output Z¼1 and stays in state q0.
11/0 says that in state q0, if XY¼11, then output Z¼0 and transition to state q1.

From the general organization of sequential circuits, i.e., Fig. 5.29, we can obtain
the first diagram shown in Fig. 5.31 for the serial adder. The enable signal of the D
flip-flop is the clock signal CLK. The input In(t) now denotes two variables X and
Y. The second diagram in Fig. 5.31 further simplifies by using notations closer to the
state-transition table. From the transition table, we can easily derive the following
Boolean expressions for the two combinational circuits F and G.

• Z(t) ¼ F(In(t), Q(t))
• Q(t+1) ¼ G(In(t), Q(t))

which are equivalently rewritten as the following expressions:

• Combinational circuit F: Z ¼ F(X, Y, Q) ¼ X
L

Y
L

C
• Combinational circuit G: Qnext ¼ G(X,Y, Q) ¼ (X ∙ Y) + (X

L
Y) ∙ Q

Q X Y Z Qnext

q0 0 0 0 q0

q0 0 1 1 q0

q0 1 0 1 q0

q0 1 1 0 q1

q1 0 0 1 q0

q1 0 1 0 q1

q1 1 0 0 q1

q1 1 1 1 q1

q0 q1

00/0, 01/1, 10/1 01/0, 10/0, 11/1

11/0

00/1

Fig. 5.30 Automaton for the 4-bit serial adder: state-transition table and state transition diagram

222 5 Systems Thinking

These are the current output function and the next state function, respectively.
They denote the current output bit Z and the carry-out bit Cout, respectively. That is,
Q ¼ Cin and Qnext ¼ Cout.

Now we verify the correctness of the serial adder with an example:
1110 + 910 ¼ 10112 + 10012 ¼ 101002 ¼ 2010 ¼ 410 and overflow.
Note that we have as inputs

X3X2X1X0 ¼ 1011

Y3Y2Y1Y0 ¼ 1001

and we want the correct output to be

Z3Z2Z1Z0 ¼ 0100

with an overflowing carry-out bit of value 1.
This can be done in a sequence of four steps, where each step does a 1-bit full

addition. We immediately found an error in the above design. It did not set an initial
value for the state.

Setting the initial state value (the lowest carry-in bit C0) to 0, we have:

• Step 1: Z0 = X0
L

Y0
L

C0 = 1
L

1
L

0 = 0;
C1 = (X0 � Y0) + (X0

L
Y0) � C0 = (1 � 1) + (1

L
1) � 0 = 1

• Step 2: Z1 = X1
L

Y1
L

C1 = 1
L

0
L

1 = 0;
C2 = (X1 � Y1) + (X1

L
Y1) � C1 = (1 � 0) + (1

L
0) � 1 = 1

Combinational
Circuit G

D Flip-Flop
Combinational

Circuit F

2 /

In(t) Q(t)

Z(t)CLK

Combinational
Circuit G

Combinational
Circuit F

Qnext

2 /

X Y Q

ZCLK

Q(t+1)

D Flip-Flop

Fig. 5.31 A typical organization diagram of the serial adder

5.3 Modularization 223

• Step 3: Z2 = X2
L

Y2
L

C2 = 0
L

0
L

1 = 1;
C3 = (X2 � Y2) + (X2

L
Y2) � C2 = (0 � 0) + (0

L
0) � 1 = 0

• Step 4: Z3 = X3
L

Y3
L

C3 = 1
L

1
L

0 = 0;
C4 = (X3 � Y3) + (X3

L
Y3) � C3 = (1 � 1) + (1

L
1) � 0 = 1

The final output is Z3Z2Z1Z0 ¼ 0100, with the carry � out C4 ¼ 1, indicating that
an overflow has occurred. The carry-out and the sum output bits are written as

C4Z3Z2Z1Z0 ¼ 10100:

The computational result is correct.
☶

5.3.3 Instruction Set and Instruction Pipeline

The sequential circuits discussed in the last section are actually synchronous
sequential circuits, because each circuit is driven by a common clock signal
CLK. All states of the circuit transition to their respective next states at each clock
cycle. Such synchronous sequential circuits behave the same as the automata
discussed in Sect. 3.2. The former implements the latter.

Automata and sequential circuits are basic concepts and widely used in computer
systems and computer application systems. This section discusses how they are used
in the processor (CPU) of a computer, to implement the instruction pipeline. Each
stage of the instruction pipeline is implemented as a sequential circuit.

Every processor has an instruction set, which is the set of all possible instruc-
tions of the processor, organized in a systematic way. The instruction pipeline is the
hardware that executes the instructions. A 3-stage instruction pipeline is shown in

InIF(t) InID(t) InEX(t)

IF EXID
Instruction Stream

…… I4 I3 I2 I1

Combinational
Circuit G

State
Circuit

Combinational
Circuit FIn(t) State(t)

Out(t)CLK

OutIF(t) OutID(t) OutEX(t)

State(t+1)

Fig. 5.32 A 3-stage instruction pipeline, each stage implemented by a sequential circuit

224 5 Systems Thinking

Fig. 5.32. The three stages are instruction fetch (IF), instruction decode (ID), and
instruction execute (EX) stages.

An instruction is first fetched from the memory to an instruction register (IR) in
the processor. It is then decoded to generate proper control signals. The control
signals are then applied, together with the clock signal, to drive the multiplexers,
thus to execute the instruction and produce the result. For instance, the processing of
the MOV 0, R1 instruction stores an immediate value 0 to register R1. It goes
through the following three stages.

• Instruction Fetch (IF): IR M[PC]
• Instruction Decode (ID): Signals ¼ Decode(IR)
• Instruction Execute (EX): R1 0; PC PC+1

Having more pipeline stages can help increase the clock frequency, thus making
the processor faster. Modern processors have 5–31 pipeline stages.

Example 5.17. Design a Simple Instruction Set
Recall Sect. 2.3, where we used an assembly language program to realize the
following Go loop structure:

for i := 2; i < 51; i++ {
fib[i] = fib[i-1] + fib[i-2]

}

The code snippets of the Go language program and the corresponding assembly
language code are shown below side by side, to show their correspondences.

fib[0] = 0 MOV 0, R1
MOV R1, M[R0] //R0=12 initially

fib[1] = 1 MOV 1, R1
MOV R1, M[R0+8]

for i := 2; i < 51; i++ { MOV 2, R2 // i:=2
fib[i] = fib[i-1] + fib[i-2] Loop: MOV 0, R1 // label Loop

ADD M[R0+R2*8-16], R1
ADD M[R0+R2*8-8], R1
MOV R1, M[R0+R2*8-0]
INC R2 // i++
CMP 51, R2 // i < 51?

} JL Loop // if Yes, goto Loop

Suppose this is all we want this Fibonacci computer to do. That is, it only needs
to execute the above 11 instructions. Design an instruction set for this computer.

An instruction consists of opcode and operands. The design process can follow
the following procedure: (1) Determine the types of instructions and decide the
opcodes; (2) for each opcode, determine its operands. We may need to do tradeoffs
to balance the design of the entire instruction set.

This Fibonacci computer has five registers visible to the user: FLAGS, PC, R0,
R1, and R2. There are six different types of instructions, and each is assigned an

5.3 Modularization 225

opcode, as is shown in Table 5.6. Note that the three instructions (1) MOV 0, R1;
(2) MOV 1, R1 and (3) MOV 2, R2 belong to one type of instruction: it moves an
immediate value to a register. We only need three bits to hold the six opcodes.

The instructions, each needing 11 bits to represent, are organized in two groups as
shown in Table 5.7. The JL Loop (jump to Loop if FLAGS is “less than”) instruction
needs only one operand to hold the value of Loop, which in this example is 5. The
other instructions each need two operands.

Let us first look at the first group of instructions, where the first operand is an
immediate value. The JL instruction (opcode 101) needs only 1 operand, which is an
unsigned integer of 8 bits (11 � 3 ¼ 8). The JL instruction can jump to a memory
address from 0 to 255. For the other 5 instructions, Operand 1 is a 6-bit value, and
Operand 2 specifies one of four registers. That is, 00, 01, 10, 11 specify R0, R1, R2,
R3, respectively.

In the second group of instructions, Operand 1 is a 6-bit value specifying a
memory address, and Operand 2 specifies one of four registers. Based on the base
+index+offset addressing mode, the memory address is computed by the following
relations:

Table 5.6 The opcodes of the instruction set of the Fibonacci computer

Instruction type Opcode Semantics

MOV to Register 000 Assign an immediate value to a register

MOV to Memory 001 Assign the content of a register to M[Address]

ADD 010 R1 + M[Address]! R1

INC 011 R + 1! R (R is a register)

CMP 100 Compare to a value, assign the result to FLAGS

JL 101 If FLAGS is '<' (less than), Loop! PC

Table 5.7 How the 11 instructions of the Fibonacci computer are represented

Opcode
3-bit

Operand 1
Immediate Value, 6-bit

Operand 2
Register, 2-bit Instruction

000 000000 01 MOV 0, R1

000 000001 01 MOV 1, R1

000 000010 10 MOV 2, R2

011 111111 10 INC R2

100 110011 10 CMP 51, R2

101 00000101 JL Loop

Opcode
3-bit

Operand 1
Memory Address, 6-bit

Operand 2
Register, 2-bit Instruction

001 R0+R2*0+0 01 MOV R1, M[R0]

001 R0+R2*0+8 01 MOV R1, M[R0+8]

001 R0+R2*8-0 01 MOV R1, M[R0+R2*8-0]

010 R0+R2*8-8 01 ADD M[R0+R2*8-8], R1

010 R0+R2*8-16 01 ADD M[R0+R2*8-16], R1

226 5 Systems Thinking

Address = R0 + R2*I + J, where
I = 0, 1, 2, 4, 8
J = 0, �4, �8, �16

Since the base register R0 and the index register R2 are given and fixed, there are
5�7 ¼ 35 possible (I, J) pairs, and thus 35 distinct values for Operand 1. Since
35<26, 6 bits are enough for Operand 1. For instance, given the initial values of R0¼
12 and R2 ¼2, R0+R2*8-8 ¼ 12 + 2*8 -8 ¼ 12 + 8 ¼ 20.

☶

5.3.4 Software Stack on a von Neumann Computer

Now a computer can execute instructions by its instruction pipeline hardware, we go
to see how the computer software is organized. Typically, the software is organized
as a layered structure, called software stack, on top of a common abstraction of
hardware, the von Neumann architecture, as shown in Table 5.8.

Software can be classified as application software and infrastructure software.
The latter provides an infrastructure for applications and can be further divided into
middleware and system software. Middleware is so called because it is between
application software and system software. Examples of middleware include database
management systems such as MySQL, Web servers such as Nginx, and Web
Browsers such as Chrome. System software normally views middleware the same
as application software.

We have already used the Linux operating system and the Go programming
language with its associated Go compiler. In the Personal Artifact project, students

Table 5.8 Examples of software stack on top of a common von Neumann architecture

Software type Example

Application Software Scientific computing, Business computing, Per-
sonal productivity software;PDF, Search Engine,
TikTok, WeChat

Infrastructure
Software

Middleware Databases
Web
servers
Web
Browsers

MySQL
Nginx, WebServer.go
Chrome, Safari

System
Software

Languages
Compilers
Interpreters

C, Go, JavaScript, Python
Shell

Operating
Systems

Linux, Android, iOS, Windows

Firmware BIOS

von Neumann Architecture

Hardware

5.3 Modularization 227

are asked to use the HTML/CSS/JavaScript programming environment to create
their dynamic webpages, to be run on a Web server and a Web browser.

The most basic system software is called firmware, often hardwired into a
memory device. This way, when the power is turned on, the instructions and data
in the firmware are ready to go. Thus, firmware is not as hard as hardware, but also
not as flexible or soft as software. Firmware is used to realize functionality such as
power-on checks and diagnostics, initializing the basic hardware configuration, and
loading the operating system from the hard disk. An example firmware is BIOS, or
the Basic Input/Output System in our personal computers.

Source code refers to programs written in human understandable high-level
languages or assembly languages. Binary code (executable code) refers to the code
of a string of 0’s and 1’s.

5.4 Seamless Transition

A modern personal computer can execute a billion instructions per second. How
does the computer smoothly transition from one instruction to the next one in this
billion-step computational process? We can refine this question by asking three more
focused problems:

• How to identify the first instruction?
• How to ensure a single instruction’s correct execution?
• How to find the next instruction and transition to it?

Computer systems capable of solving the above three problems are said to have
the capability of seamless transition. It turns out that computer science has
established four principles to support seamless transition, as listed in Box 5.1.

Box 5.1. Four Principles of Seamless Transition
• Yang’s Cycle Principle. A computational process consists of cycles of

diversity. The system finishes one cycle and automatically returns to the
beginning (of the next cycle), so that processes preserve their kinds.

• Postel’s Robustness Principle. Be tolerant of inputs, and strict on outputs.
• von Neumann’s Exhaustiveness Principle. Instructions must be given to

the computer in absolutely exhaustive detail, for the computer to execute
completely without intelligent human intervention.

• Amdahl’s Law. Suppose a computational process’s execution time can be
broken into two portions (1� f) and f, such that (1� f) > f. Improve on the
common case, i. e. , the (1� f) portion, but be aware that speedup is at most
1/f.

228 5 Systems Thinking

It is not the case that one principle is proposed for a problem. The roles of the four
principles can be roughly described as follows:

• Yang’s cycle principle addresses part of the third problem as well as the mega
question: how does the computer smoothly transition from one instruction to the
next one?

• Postel’s robustness principle mostly addresses the second problem.
• von Neumann’s exhaustiveness principle involves all three problems.

While the above three principles target the functionality of a system, the fourth
principle, Amdahl’s law, addresses the performance of a system. Seamless transition
does not just mean that the system correctly executes computational processes, it
also implies that computational processes flow through the system smoothly and
seamlessly. Amdahl’s law addresses such performance issues.

5.4.1 Yang’s Cycle Principle

Any computational process is a multi-step process. A fundamental question is the
following: How to ensure the seamless transition from one step to the next step?

Computer science uses a single principle to solve this problem. This principle
does not have a name. We call it Yang’s cycle principle, or Yang Xiong’s principle
of cycles, because Yang Xiong presented a similar principle around year 2 BCE, in
his classic The Canon of Supreme Mystery (太玄经).

Head Zhou (Full Circle) : Yang qi comes full circle. Divinely, it returns to the beginning.
Things go on to preserve their kinds.

A system executes a computational process in a sequence of cycles. The system
finishes one cycle and automatically returns to the beginning (of the next cycle), so
that different computational processes preserve their respective kinds.

How can it be done to automatically return to the beginning of the next cycle?
Because, at the basic level, a computing system is a sequential circuit. It uses the
current state Q to generate the next state Qnext.

For instance, recall the typical organization of sequential circuit in Sect. 5.3.2,
which we redraw below. At step k, the system is in state Q, which is the output of the
D flip-flops. The system uses Q and the current input In to generate Qnext through
circuit G, and to generate the current output Out through circuit F. This is the
functionality of step k. When step k finishes, Qnext replaces Q to become the current
state via the D flip-flops, and the system returns to the beginning of step k + 1.

The same mechanism works for all steps, enabling different steps to realize
different functionalities. This is what “things go on to preserve their kinds” implies.

5.4 Seamless Transition 229

This support of diversity can be realized by using control signals. In Fig. 5.33,
inputs (In) to the two circuits F and G actually consist of Data Inputs and Control
Inputs. A control input signal can be used to select the functionality of a circuit, such
as to add or to subtract, as shown by the selection signal S in Fig. 5.26.

The above principle is a general principle, working for step (or cycle) that could
be at different granularities:

• A small granularity is clock cycle. For instance, a 1-GHz processor has the clock
cycle of 1 ns. At this granularity, the multi-step computational process is a
sequence of clock cycles. The system finishes one clock cycle and returns to
the beginning of the next clock cycle.

• At the instruction granularity, a computer finishes a step by executing an instruc-
tion cycle. At this granularity, the multi-step computational process is a sequence
of instruction cycles. The system finishes one instruction cycle and returns to the
beginning of the next instruction cycle. Note that an instruction cycle is itself
implemented by a sequence of clock cycles, to realize pipeline stages of Instruc-
tion Fetch, Instruction Decode, and Instruction Execution. Each stage of the
instruction pipeline may need one or more clock cycles.

• At the program granularity, a computer finishes a step by executing a program
cycle. At this granularity, the multi-step computational process is a sequence of
program cycles. The system finishes one program cycle and returns to the
beginning of the next program cycle. Note that a program cycle is itself
implemented by a sequence of instruction cycles.

To recap: a task such as sending a WeChat text message involves the execution of
a number of programs. A task is implemented by a sequence of program cycles. A
program cycle is implemented by a sequence of instruction cycles. An instruction
cycle is implemented by a sequence of clock cycles. In each of these cases, we
observe a common principle: when a step finishes, the system returns to the
beginning of the next step, until the entire computational process completes.

Combinational
Circuit G

D Flip-Flops
Combinational

Circuit FQnext Q

OutCLK
In =

Data Inputs
Control Inputs

Fig. 5.33 A typical sequential circuit organization

230 5 Systems Thinking

5.4.2 Postel’s Robustness Principle

Postel’s robustness principle was originally proposed in 1980 by Internet pioneer
Jon Postel for robust communication on the Internet. Since then, it has been applied
to other systems.

TCP implementations should follow a general principle of robustness: be conservative in
what you do, be liberal in what you accept from others.

Jon Postel, 1980

This principle is often shortened to: be tolerant of input and strict on output. It has
an important implication: accumulation of errors, drifts, and distortions can often be
avoided. We will use an example of combinational circuit design to illustrate this
principle.

Figure 5.34 shows a combinational circuit of five NAND gates. We focus on gate
G. It receives inputs from gates A and B, and sends an output to gates H and I. We
need to understand how the single step of gate G correctly works. That is, how gate
G correctly accepts values from gates A, B and generates correct output value Z.

Two designs of the CMOS circuit for a NAND gate are shown by contrasting
their parameters. Suppose the CMOS transistors have the following characteristics:

• The HIGH voltage Vdd is 2 Volt.
• The LOW voltage Vss is 0 Volt.

Parameter Settings

Vdd = 2 Volt
Vss = 0 Volt
Vth = 0.7 Volt

Naïve Design
Logic 1: > 0.7 Volt
Logic 0: < 0.7 Volt

Better Design
For Input Voltages
Logic 1: > 1.5 Volt
Logic 0: < 0.5 Volt
For Output Voltages
Logic 1: > 1.9 Volt
Logic 0: < 0.1 Volt

X
Y

Z

X Y Z

0 0 1

0 1 1

1 0 1

1 1 0

X Y

Y

X

Z

Vdd

Vss

A

B

G
H

I

X=1.95

1.52

Y=0.07

0.47

Z=1.96

Fig. 5.34 A combinational circuit demonstrating Postel’s Robustness Principle

5.4 Seamless Transition 231

• The threshold voltage Vth is 0.7 Volt. That is, the transistor will turn ON if the
gate voltage rises over the threshold of 0.7 Volt, and turn OFF when the gate
voltage drops below 0.7 Volt.

The naïve design has various problems and is difficult or impossible to imple-
ment. The main problem is that the specification “Logic 1: > 0.7 Volt” and “Logic 0:
< 0.7 Volt” has no safe margin for deviations and leaves no minimal gap between
voltages for logic 1 and logic 0. How many margins should there be? Should inputs
and outputs of a logic gate be treated the same way?

Postel’s robustness principle tells us No! We should leave more margin for the
input than the output. The Better Design follows this principle.

• Tolerance on inputs. The Better Design leaves a 0.5 Volt margin for an input
signal to a gate. Only when the input voltage is larger than 1.5 Volt, not 0.7 Volt,
should the logic value correspond to logic 1. Only when the input voltage is less
than 0.5 Volt, not 0.7 Volt, should the logic value correspond to logic 0. There is a
minimal gap of 1 Volt between the voltages for logic 0 and logic 1.

• Strictness on outputs. The Better Design leaves a 0.1 Volt margin for an output
signal from a gate. Only when the out voltage is larger than 1.9 Volt, not 0.7 Volt,
should the logic value correspond to logic 1. Only when the output voltage is less
than 0.1 Volt, not 0.7 Volt, should the logic value correspond to logic 0. There is a
minimal gap of 1.8 Volt between the voltages for logic 0 and logic 1.

With this design, a gate can tolerate input deviations within 0.5 Volt, but
accommodate output deviations within only 0.1 Volt. The design is indeed tolerant
of input and strict on output.

Suppose the two inputs of gate G have logic values X¼1 and Y¼0. The output Z
should be equal to 1. But Gate B actually outputs 0.07 Volt. The signal is later raised
to 0.47 Volt when it travels through the wire to arrive at gate G. This is fine, because
gate G views any input value between 0 Volt and 0.5 Volt as indicating a logic
0. Similar analysis applies to the output of gate A. Gate G views any input value
between 2 Volt and 1.5 Volt as indicating a logic 1. For Z¼1, the output voltage is
not between 2 Volt and 1.5 Volt. The CMOS circuit implementation guarantees that
it is a valued between 2 Volt and 1.9 Volt.

5.4.3 von Neumann’s Exhaustiveness Principle

The exhaustiveness principle is due to John von Neumann. In the First Draft of a
Report on the EDVAC, he stated right at the beginning of the document the following
principle, when defining an automatic computing system (called the device) for
problem-solving such as to solve a non-linear partial differential equation (called
this operation).

232 5 Systems Thinking

The instructions which govern this operation must be given to the device in absolutely
exhaustive detail. They include all numerical information which is required to solve the
problem under consideration . . .

Once these instructions are given to the device, it must be able to carry them out
completely and without any need for further intelligent human intervention.

John von Neumann, 1945

Note that instructions in the above quote are not only binary instructions of
program code, but all numerical information. Obviously, the computer must be
given the input data and the processing program code. The computer must also be
given information such as the library of functions, context information, etc.

In addition, a computer must be given the answers to the following three
questions:

• Where and what is the first instruction, when the computer power is turned on?
• How to determine the next instruction to execute?
• What types of exceptions are there, to normal execution of programs?

We use three examples to demonstrate the exhaustive principle.

Example 5.18. First Instruction to Execute When the Power Is Turned On
When the power is turned on in a computer with an x86 processor, the first
instruction to execute is at memory address 0xFFFFFFF0, and it contains a jump
instruction such as JUMP 000F0000. Address 000F0000 contains the entry instruc-
tion for the BIOS code.

Thus, the computer starts by executing the BIOS firmware code to initialize the
system and to load the operating system. Adding a jump instruction upfront
increases flexibility. For instance, if we want the computer to start by executing
another firmware code BIOS-2 at address 000FA000, we can easily do so by
changing the contents of address 0xFFFFFFF0 to JUMP 000FA000.

Example 5.19. Three Methods to Determine the Next Instruction to Execute
Historically, three methods have been used to determine the next instruction to
execute. Modern computers mostly use the program counter (PC) mechanism: the
address of the next instruction to execute is stored in the program counter.

Another simple method was used by the revised version of the ENIAC computer:
the format of every instruction is expanded to have a field for holding the address of
the next instruction.

The earliest method is linear sequencing. The Harvard Mark I computer was
designed by graduate student Howard Aiken and built by IBM. It was an electro-
mechanical Automatic Sequence Controlled Calculator, meaning that instructions
are linearly sequenced. There is no jump or branch. The next instruction is located
right after the current instruction on an instruction tape.

The Mark I machine treats instructions and data differently, by storing data in
memory and instructions on tape. This Harvard architecture is still widely used in
the cache units of modern computers. A processor normally has separate instruction
cache and data cache. In contrast, the Princeton architecture uses a single cache or
memory to store both data and instructions.

5.4 Seamless Transition 233

Example 5.20. Three Types of Exceptions
Three types of exceptions are considered in almost all computers.

• Interrupt. For instance, when the user punches a key on the keyboard, the current
instruction finishes and the computer jumps to an interrupt handling subprogram
to handle the interrupt, such as writing the punched key value to memory.

• Hardware error. When the memory chip becomes faulty, we cannot use the
interrupt mechanism, since we cannot fetch the current instruction from memory.
An exception handling subprogram stored somewhere else should be executed.

• Machine check. This is the “all other” exception, for exhaustiveness.

5.4.4 (***) Amdahl’s Law

Amdahl’s law was originally proposed by Gene Amdahl, a designer of the famous
IBM S/360 general-purpose computer. The modern form of this law can be stated
succinctly as follows: After enhancing a portion of a system, the speedup obtained is
upper bounded by the reciprocal of the other portion’s time.

More precisely, suppose a system’s execution time is broken into two portions
(1� f) and f, such that (1� f) > f. Enhancement on the (1� f) portion can lead to a
speedup no more than 1/f.

Here, speedup is (time before enhancement) / (time after enhancement).

Example 5.21. How Much Speedup Is Possible by Enhancing the Processor?
Suppose executing a task, e.g., rendering a short movie, takes 600 s. CPU processing
takes 90% of time, and accessing the memory and I/O devices takes the
remaining10%. How much is the speedup, if the CPU is 9 times faster? How
much is the speedup, if the CPU is 9999 times faster?

For the old system, f ¼ 0.1, and the execution time of the task is

Told ¼ 0:9� 600þ 0:1� 600 ¼ 540þ 60 ¼ 600 s:

For the enhanced system, the CPU is 9 times faster, implying that the CPU
processing time is 1/10 of the old one. The execution time becomes

Tenhanced ¼ 0:9� 600=10þ 0:1� 600 ¼ 54þ 60 ¼ 114 s:

The speedup is 600/114 ¼ 5.26.
Now suppose the new CPU is 9999 times faster. In the enhanced system, the CPU

processing time is 1/10000 of the old CPU processing time. The execution time of
the task becomes

234 5 Systems Thinking

Tenhanced ¼ 0:9� 600
10000

þ 0:1� 600 ¼ 0:054þ 60 ¼ 60:054 s:

The speedup becomes 600/60.054 ¼ 9.99. Note that as the CPU becomes faster,
the speedup approaches but never exceeds 1/f ¼ 1/0.1 ¼ 10.

☶

Amdahl’s law offers two advices for system design.

• Optimize the common case. In the above example, the common case of the old
system is CPU processing, which takes 90% of execution time. The other portion
for accessing memory and I/O devices forms the uncommon case, which takes
only 10% of execution time. So, system enhancement, or system optimization,
should focus on the common case: CPU processing.

• Chase the bottleneck. After making the CPU 9 times faster, i.e., reducing the CPU
processing time to one tenth of the old CPU processing time, the total time
becomes 114 s. Furthermore, accessing memory and I/O devices becomes the
common case (also called the bottleneck). We should change our optimization
target to reducing the time for accessing memory and I/O devices. When the
bottleneck changes, so does our target. This is called to chase the bottleneck.

5.4.4.1 Instruction Pipeline Revisited

Consider again the Fibonacci Computer example in Sect. 2.3, especially the execu-
tion of the MOV 0, R1 instruction in a 3-stage instruction pipeline:

• Instruction Fetch (IF): IR M[PC]
• Instruction Decode (ID): Signals ¼ Decode(IR)
• Instruction Execute (EX): R1 0; PC PC+1

Before the instruction is executed, the computer has the configuration (also
known as state) shown in Fig. 5.35. Note that several new components of the
processor are exposed. These system components are invisible to programmers.

• IR is the Instruction Register, which holds the instruction being executed.
• MAR is the Memory Address Register, which holds the memory address to be

used to access the memory.
• MDR is the Memory Data Register, which holds the data value for a memory

access (load or store).
• Controller is the control circuitry used to generate control signals of instruction.

After the Instruction Fetch (IF) stage finishes, the computer transitions to the
configuration in Fig. 5.36a. After the Instruction Decode (ID) stage finishes, IR
guides the controller to generate control signals shown in red in Fig. 5.36a.
Figure 5.36b shows the configuration after the EX stage finishes. Note that PC has
changed to 6, ready to execute the next instruction, MOV R1, M[R0+R2*8-16].

5.4 Seamless Transition 235

The instruction pipeline hardware resource can be shared by multiple instruction
executions, through the overlapping of pipeline stages, as shown in Fig. 5.37. When
there is no overlapping, pipelining has no speed advantage. Suppose a processor has
a clock frequency of 1 GHz without overlapping. It can execute 1 billion instructions
per second. With overlapping, the processor’s clock frequency can increase to
3 GHz. It can now execute 3 billion instructions per second.

5.4.4.2 Cache

Caching is a method to enhance performance by adding a fast but small memory,
called cache, between the processor and the memory, as shown in Fig. 5.38.

We note a phenomenon that is widely present in computers today. There is a big
gap between the processor speed and the memory access speed. Theoretically, a
pipelined processor can execute one instruction per clock cycle. However, to
perform one memory access (load or store) needs 14 ns, or 43 clock cycles. This
disparity is often called the von Neumann bottleneck: the memory is too slow to
feed data to the processor.

Figure 5.38 uses a hypothetical Fibonacci Computer to show that caching can
alleviate this bottleneck and increase performance by utilizing locality: data or
instructions recently used or nearby are likely to be used again. We store and
reuse frequently used data and instructions in the cache.

Cache can itself be layered. In Fig. 5.38b, the cache is organized as two layers.
Layer 1 consists of separate instruction cache and data cache, each holding 32KB

System Software

Data

12

1

2

ALU

Controller

Processor (CPU)

Memory Computer

FLAGS

5

MAR

R0

R1

R2

PC IR

MDR

0
1
2
3 ……
4
5 MOV 0, R1
6 MOV R1, M[R0+R2*8-16]

Fig. 5.35 Computer configuration right before the MOV 0, R1 instruction is executed

236 5 Systems Thinking

System Software

Data

12

1

2

ALU

Controller

Processor (CPU)

Memory Computer

FLAGS

MOV 0, R1

5

MOV 0, R1
5

MAR

R0

R1

R2

PC IR

MDR

0
1
2
3 ……
4
5 MOV 0, R1
6 MOV R1, M[R0+R2*8-16]

(b)

①
②

③ ④

⑤
Signals

System Software

Data

12

0

2

ALU

Controller

Processor (CPU)

Memory Computer

FLAGS

MOV 0, R1

5

MOV 0, R1
6

MAR

R0

R1

R2

MDR

0
1
2
3 ……
4
5 MOV 0, R1
6 MOV R1, M[R0+R2*8-16]

①

②
PC IR

(a)

Fig. 5.36 Computer configurations after the IF, ID, and EX stages finish, respectively. (a) After the
Instruction Fetch stage (micro operations), and after the Instruction Decode stage
(micro operation). (b) After the Instruction Execute stage (micro operations)

5.4 Seamless Transition 237

information but is as fast as the CPU. Layer 2 is a single cache shared by both
instructions and data. It is larger (256 KB) but slower (4 cycles) than layer 1.

Example 5.22. Caching Enhances Computer Performance
Let us use the above Fibonacci computer to compute F(92). The loop code showing
in red in Fig. 5.38c is executed 92 times, while the code in black only executes once.
We thus focus on the seven instructions in the loop code to estimate performance,
ignoring all initialization overheads.

The first instruction of the loop, MOV 0, R1, needs to access the memory once, to
load the instruction, which needs 14 ns, or 14/0.326 ¼ 43 clock cycles. All other
micro-operations are internal operations. We assume that altogether they can be
accomplished in one clock cycle. Due to pipeline overlapping, the MOV 0, R1
instruction itself costs 43 clock cycles. The same analysis goes for the fifth, sixth,
seventh instructions, each costing 43 clock cycles. Similar analysis applies to the
second, third, and fourth instructions. They each need 86 clock cycles due to needing
two memory accesses, one for fetching the instruction, and the other for loading/
storing data.

The peak speed of a computer is the maximal theoretical number of instructions
executed per second. As the joke goes, the vendor of the computer guarantees that
you can never exceed this speed. The above Fibonacci computer has a clock
frequency of 3.07 GHz, translating to a peak speed of 3.07 GIPS, or Giga instruc-
tions per second. The sustained speed of the computer is the actual number of
instructions executed per second. For the loop code, each iteration of the seven

I1Cycle 1: …… I4 I3 I2

Cycle 2: …… I4 I3 I2

Cycle 3: …… I4 I3 I2

IF ID EX

IF ID EX

I1

I1

(a)

I1Cycle 1: …… I 4 I3 I2

Cycle 2: …… I5 I4 I3

Cycle 3: …… I6 I5 I4

I2 I1

I3 I1I2

(b)

Fig. 5.37 A 3-stage instruction pipeline, without or with overlapping

238 5 Systems Thinking

instructions needs 43*4 + 86*3 ¼ 43*10 ¼ 430 clock cycles ¼ 430 * 0.326 ¼
140 ns. The sustained speed is 7/140 ¼ 0.05 GIPS.

Efficiency is (sustained speed) / (peak speed), which in this case is 0.05 / 3.07 ¼
1.63%. In other words, the von Neumann bottleneck renders the computer ineffi-
cient, only achieving 1.63% of the processor’s peak speed.

(a) (b)

Processor

Pipelined CPU
3.07 GHz, 0.326 ns = 1 cycle

Memory
~14 ns = 43 clock cycles

I-Cache
32KB, 1 Cycle

D-Cache
32KB, 1 Cycle

Shared Cache
256 KB, 4 Cycles

Processor

Memory
~14 ns = 43 clock cycles

Pipelined CPU
3.07 GHz,

0.326 ns = 1 cycle

No Caching Caching
MOV 0, R1 43
MOV R1, M[R0] 86
MOV 1, R1 43
MOV R1, M[R0+8] 86
MOV 2, R2 43

Loop: MOV 0, R1 43 1
ADD M[R0+R2*8-16], R1 86 1
ADD M[R0+R2*8-8], R1 86 2
MOV R1, M[R0+R2*8-0] 86 2
INC R2 43 1
CMP 51, R2 43 2
JL Loop 43 3

(c)

Fig. 5.38 Using cache to enhance performance. (a) A pipelined computer without cache. (b) A
pipelined computer with cache. (c) Number of clock cycles needed to execute each instruction:
without cache vs. with cache

5.4 Seamless Transition 239

Now caching comes to the rescue. All instructions and data can be stored in the
I-cache and the D-cache, respectively. Thus, accessing memory only need one clock
cycle. If the instruction pipeline works smoothly in full overlapping, each instruction
will cost only 1 clock cycle.

However, there are dependencies, which cause the pipeline to stall. The third
instruction ADD M[R0+R2*8-8], R1 actually does R1 + M[R0+R2*8-8] ! R1,
which depends on the result data R1 from the previous instruction. This is called
data dependency. The pipeline needs to stall for one extra cycle for data to become
available. The seventh instruction JL Loop indicates a jump to the back of the Loop,
to execute the first instruction MOV 0, R1 again for the next iteration. However, the
first instruction MOV 0, R1 cannot be fetched, until the JL Loop finishes. This is
called control dependency. The pipeline needs to stall for two extra cycles for the
jump instruction to finish.

With caching, each iteration of the seven instructions needs 1*3 + 2*3 + 3*1 ¼
12 cycles ¼ 12 * 0.326 ¼ 3.91 ns. The sustained speed is 7/3.91 ¼ 1.79 GIPS,
achieving a speedup of 1.79/0.05 ¼ 35.8. The efficiency becomes 1.79 / 3.07 ¼
58.32%.

To summarize, caching does not necessarily increase peak speed, but can signif-
icantly increase sustained speed and efficiency.

☶

5.4.4.3 Parallel Computing

Another approach to enhancing performance is parallel computing, which employs
multiple processors to execute a computational task. Each processor in such a
parallel computer is called a core. Most examples of this book only use single-
core computers, also known as sequential computers. However, students need to
know that most real computers today, from smartphones to supercomputers, employ
multi-core processors.

Example 5.23. Parallel Computing Enhances Supercomputer Performance
Top500 is a list of the world’s fastest supercomputers, maintained since 1993. The
performance of a supercomputer is tested by executing a benchmark program, called
Linpack, for solving a system of linear equations using Gaussian elimination. In
other words, it finds x in Ax ¼ b, where A is an N � N matrix, and x,
b are two N � dimensional vectors. The equation Ax ¼ b can be explicitly writ-
ten as the following, when N ¼ 3:

240 5 Systems Thinking

a11 a12 a13
a21 a22 a23

a31 a32 a33

2

6
4

3

7
5�

x1
x2

x3

2

6
4

3

7
5 ¼

b1
b2

b3

2

6
4

3

7
5

Table 5.9. compares two parallel computers, i.e., the Top-1 systems in 1993 and
in 2020, respectively. Note that the speed (performance) increased nearly 7 million
times in 27 years, from 59.7 GFlop/s in 1993 to 415 PFlop/s in 2020. This is
equivalent to an annual growth rate of more than 24%.

Faster computers can solve bigger problems. The problem size N, i.e., the size of
matrix A, increased 391 times. Since the number of operations is O(N3), the number
of 64-bit floating-point operations increased more than 60 million times.

The most important factor contributing to this multi-million-fold enhancement is
parallelism, which increased over seven thousand times. In contrast, the clock
frequency only increased 68 times.

☶

5.5 Exercises

1. Regarding the objectives of systems thinking, which of the following statements
are/is correct?

(a) Systems thinking aims to coping with complexity, meaning that it reduces
complexity from O(N4) to O(logN), where N is the problem size.

(b) Systems thinking aims to being thorough, meaning that it considers all
necessary and unnecessary details of the system, leaving no stones unturned.

(c) Systems thinking emphasize flexibility, by designing a specific system for a
target application scenario in an ad hoc manner.

(d) Systems thinking uses abstractions to cope with complexity.

2. Consider the big endian vs. little endian representations of numbers. Which of
the following statements are/is correct?

Table 5.9 Parallel computing enhances performance: Top500 Linpack test comparison

Time of test 1993 2020 1993–2020 Growth factor

Top-1 Name Thinking Machine CM-5 Fujitsu Fugaku N/A

Problem Size N ¼ 52,224 N ¼ 20,459,520 392

Speed 59.7 GFlop/s 415,530 TFlop/s 6,960,302

Clock Frequency 32 MHz 2.2 GHz 69

Parallelism 1024 cores 7,299,072 cores 7128

Memory 32 GB 4,866,048 GB 152,064

Power 96.5 KW 28,334.5 KW 294

Cost US $30 million US $1 billion 33

5.5 Exercises 241

(a) Big endian places the least significant byte in the smallest address.
(b) Big endian places the most significant byte in the smallest address.
(c) Big endian is better than little endian.
(d) Neither the big endian nor the little endian representation is better than the

other representation.

3. Which of the following list orders abstractions from low-level to high-level?

(a) Computer, transistor, motherboard, CPU microchip
(b) Computer, CPU microchip, transistor, motherboard
(c) Transistor, CPU microchip, motherboard, computer
(d) Transistor, motherboard, CPU microchip, computer

4. Which of the following list orders abstractions from high-level to low-level?

(a) Computer, transistor, logic gate, memory
(b) Computer, logic gate, memory, transistor
(c) Computer, memory, logic gate, transistor
(d) Transistor, memory, logic gate, computer

5. Which of the following list orders abstractions from high-level to low-level?

(a) Computer, transistor, combinational circuit, sequential circuit
(b) Computer, sequential circuit, combinational circuit, transistor
(c) Combinational circuit, computer, transistor, sequential circuit
(d) Transistor, sequential circuit, combinational circuit, computer

6. The operating system of a computer uses one abstraction to manage all appli-
cation software programs. What is it?

(a) Instruction
(b) Program
(c) Code
(d) Process

7. The operating system of a computer uses one abstraction to manage all appli-
cation software programs. What is it?

(a) High-level language program
(b) Machine code program
(c) Processor
(d) Process

8. In a positional number system, the two 6’s in 0x06F6 denote different values, as
they are in different positions. Which of the following statements are/is correct?

(a) The leftmost 6 denotes 610 and the rightmost 6 denotes 153610.
(b) The leftmost 6 denotes 153610 and the rightmost 6 denotes 610.
(c) The leftmost 6 denotes 6�162 and the rightmost 6 denotes 6�160.
(d) The leftmost 6 denotes six hundreds and the rightmost 6 denotes six ones.

242 5 Systems Thinking

9. Consider the hexadecimal number a ¼ 0x06F6 in a positional number system.
Which of the following statements are/is correct?

(a) The equivalent binary representation is 0000011011110110.

(b) The value of 0x06F6 is
P3

i¼0 ai � 16i
� � ¼ 6� 162 þ 15� 16þ 6 ¼ 1782.

(c) The base is 16 and the digit set is {0, 1, 2, . . ., E, F}.
(d) The base is 10 and the digit set is {0, 1}, since computer only uses binary

numbers of 0 and 1.

10. In IEEE 754 floating-point single precision format, the string of 32 bits
01000000010010010000111111011011 represents the decimal value
3.1415927. Assume a string S ¼ 11000000010000000000000000000000 of
32 bits are given. Which of the following statements are/is correct?

(a) String S is a negative number.
(b) String S is a positive number.
(c) String S has an exponent value of 10000000 ¼ 12810.
(d) String S has an exponent value of 1.
(e) String S has a significant value of 0.1 ¼ 0.510.
(f) String S has a significant value of 1.1 ¼ 1.510.

11. In IEEE 754 floating-point single precision format, the string of 32 bits
01000000010010010000111111011011 represents the decimal value
3.1415927. Assume a string S ¼ 11000000010000000000000000000000 of
32 bits are given. Which of the following statements are/is correct?

(a) String S represents the decimal value 0.5�2128.
(b) String S represents the decimal value �0.5�2128.
(c) String S represents the decimal value 0.5�21.
(d) String S represents the decimal value �0.5�21.
(e) String S represents the decimal value 1.5�2128.
(f) String S represents the decimal value �1.5�2128.
(g) String S represents the decimal value 1.5�21.
(h) String S represents the decimal value �1.5�21.

12. Consider representing 0 as an IEEE 754 floating-point number in single preci-
sion format. Which of the following statements are/is correct?

(a) The representation is 00000000000000000000000000000000.
(b) The representation is 10000000000000000000000000000000.
(c) The representation is 00000000010000000000000000000000.
(d) The representation is 10000000010000000000000000000000.

13. Floating-point numbers are often approximate values of real numbers. Suppose
we want to test whether two floating-point variables X and Y have equal values.
We may choose the following Go code:

5.5 Exercises 243

(A) if X==Y { . . . }
(B) if math.Abs(X-Y) < math.Pow(10,-15) { . . . }

Which of the above code are/is correct?

(a) Only A.
(b) Only B.
(c) Either A or B.
(d) Neither A nor B.

14. Mathematically, 2�2¼4 and 0.1�0.1¼0.01. This is not always true in cyber-
space. What does the following code output?

X := 2
Y := 0.1
fmt.Println(X*X == 4, Y*Y == 0.01)

(a) false false
(b) false true
(c) true false
(d) true true

15. Assume the following code is given.

var S [5]byte = [5]byte{'H','E','L','L','O'}
var byteSlice []byte = S[1:2]
fmt.Printf("%s %d", byteSlice, len(byteSlice))

The output is:

(a) HE 2
(b) EL 2
(c) H 1
(d) E 1
(e) L 1

16. Assume the following code is given.

X := 53
P := &X
fmt.Println(*P)

Which of the following statements are/is correct?

(a) X is an integer variable.
(b) Expression &X returns the address value of variable X.
(c) P is a pointer variable holding the address of variable X.
(d) Expression *P returns the value of variable X, i.e., 53.

244 5 Systems Thinking

17. Assume the following code is given.

X := 53
p := &X
fmt.Println(*p)

The output is:

(a) 5
(b) 3
(c) 53
(d) A hexadecimal number representing variable X’s address

18. Write a Go program to invert the first bit of 00111111 to obtain 10111111.
19. Write a Go program to replace the most significant two bits of 00111111 with

01, to obtain 01111111.
20. Refer to the image file Autumn.bmp. Which of the following is NOT metadata?

(a) The photographer’s name Li Chundian
(b) The access permission -rw-rw-rw-, i.e., 0666
(c) The size of the file
(d) The pixels of the image

21. Refer to the image file Autumn.bmp. Which of the following is NOT metadata?

(a) The time the file was last modified
(b) The RGB information of the picture elements
(c) The BMP File Header
(d) The BMP Info Header

22. Refer to Example 5.12. The textbook says: the first character is t[0]¼'H', which
is hidden in p[86:90]. Now let us consider the fourth character, which of the
following statement is correct?

(a) The fourth character is t[3]¼'L', which is hidden in p[89:93].
(b) The fourth character is t[3]¼'L', which is hidden in p[90:94].
(c) The fourth character is t[3]¼'L', which is hidden in p[98:102].
(d) The fourth character is t[4]¼'E', which is hidden in p[98:102].

23. Modify program hide-0.go to realize the effect of Fig. 5.13. That is, hide the
contents of the text hamlet.txt in the most significant two bits of the pixel array
of the image file Autumn.bmp.

24. Precedence, sequencing, selection, and loop are four control abstractions. Which
of the following refers to loop?

(a) Check a Boolean condition to determine which part of code to execute next.
(b) Execute one statement after another in the syntactical order of the code.

5.5 Exercises 245

(c) Evaluate an expression in the order given by the precedence of operators or
parentheses.

(d) Repetitive execution of a body of code for a specific number of times.

25. Assume the following code is given, where array X¼[1–3]

sum := 0
for i := 0; i < 3; i++ {
sum = sum + X[i]

}
fmt.Println(sum)

If the code "for i¼ 0; i < 3; i++" is replaced by the following code C, what is
the output? Put the correct capital letter in the parentheses of each line below.

(a) When C is "for i ¼ 0; i < 1; i++", the output is () V: compiling error
(b) When C is "for ; i < 3; i++", the output is () W: 1
(c) When C is "for i ¼ 0; ; i++", the output is () X: runtime error
(d) When C is "for i ¼ 0; i < 3; ", the output is () Y: no termination
(e) When C is "for ; ; ", the output is () Z: 6

26. Refer to the recursive program fib-5.go to compute F(5). How many times is the
function fibonacci called in executing fib-5.go?

(a) 11
(b) 12
(c) 13
(d) 14
(e) 15

27. Refer to modularization in Sect. 5.3, which of the following statements are/is
correct?

(a) The interior of a module is invisible to other parts of a system. They can only
access a module through the module’s interface.

(b) The interior of a module is visible to other parts of a system, so that all
modules can cooperate to maximize system performance.

(c) Two modules are normally isolated. They do not have shared components.
(d) Two modules should have shared components.
(e) All of the above four can be used in designing a system. It is up to the system

designer to decide.

28. Regarding combinational circuits discussed in Sect. 5.3.1, which of the follow-
ing statements are/is correct?

(a) A combinational circuit is a number of interconnected logic gates.
(b) A combinational circuit is a number of logic gates interconnected by wires,

with no feedback wires.
(c) A combinational circuit is driven by a clock signal.

246 5 Systems Thinking

(d) A flip flop is a combinational circuit, since it consists of a number of
interconnected logic gates.

29. How many 1-input-1-output combinational circuits are there? If two combina-
tional circuits realize the same truth table, they are equivalent and counted as one
circuit.

(a) 1
(b) 2
(c) 4
(d) 8

30. How many N-input-1-output combinational circuits are there? If two combina-
tional circuits realize the same truth table, they are equivalent and counted as one
circuit.

(a) N
(b) N2

(c) 2N

(d) 22N

31. Refer to the full adder in Fig. 5.22. Which of the following statements are/is
correct?

(a) A full adder receives three inputs, two operand bits and one carry-in bit, to
generate a sum output bit and a carry-out bit.

(b) A full adder is a 2-input-2-output combinational circuit.
(c) A full adder is a 3-input-2-output combinational circuit.
(d) The sum output bit is 1, if an odd number of the three input bits are 1.

32. Refer to the fast adder in Fig. 5.24. Denote G0 ¼ X0 ∙ Y0, G1 ¼ X1 ∙ Y1,
and P0 ¼ X0

L
Y0, P1 ¼ X1

L
Y1. Which of the following equations are

correct?

(a) C2 ¼ C0 ∙ P0 ∙ P1 + P1 ∙ G0 + G1

(b) C2 ¼ C0 ∙ G0 ∙ G1 + G1 ∙ P0 + P1

(c) C2 ¼ X1 ∙ Y1 + (X1
L

Y1) � C1

(d) C2 ¼ C0 ∙ X0 ∙ Y0 + X1 ∙ Y1 + C1

33. Refer to the fast adder in Fig. 5.24. Denote G0 ¼ X0 ∙ Y0, G1 ¼ X1 ∙ Y1,
and P0 ¼ X0

L
Y0, P1 ¼ X1

L
Y1. Which of the following equations are

correct?

(a) C2 ¼ X1 ∙ Y1 + (X1
L

Y1) � C1

(b) C2 ¼ G1 + P1 � C1

(c) C1 ¼ G0 + P0 � C0

(d) C2 ¼ G1 + P1 ∙ G0 + P1 ∙ P0 ∙ C0

34. Regarding sequential circuits discussed in Sect. 5.3.2, which of the following
statements are/is correct?

5.5 Exercises 247

(a) Sequential circuits are comprised of combinational circuits and state circuits.
(b) A state circuit is realized by one or more memory cells or flip flops.
(c) A flip flop is a combinational circuit.
(d) A flip flop is an augmented combinational circuit with feedback wires.

35. Regarding sequential circuits discussed in Sect. 5.3.2, which of the following
statements are/is correct?

(a) Sequential circuits are comprised of combinational circuits and state circuits.
(b) A state circuit can be realized by one or more delay flip flops.
(c) A sequential circuit in this book is actually a clock-synchronous sequential

circuit, since the state circuit is driven by a clock signal.
(d) A sequential circuit in this book is actually a clock-synchronous sequential

circuit, since the combinational circuits are driven by a clock signal.

36. Regarding memory circuits discussed in Sect. 5.3.2, which of the following
statements are/is correct?

(a) DRAM needs constant refreshing, to compensate for electric leakage.
(b) A DRAM cell needs six transistors.
(c) A 1KB DRAM memory contains over 8000 capacitors.
(d) A 1KB SRAM memory contains over 8000 capacitors.
(e) ROM is a type of non-volatile memory.
(f) SRAM does not need refreshing, meaning its content is not lost when the

power is turned off.

37. Consider the characteristics of memory circuits discussed in Sect. 5.3.2. Put the
correct capital letter in the parentheses of each line below.

(a) Volatile, fast, expensive correspond to () U: DRAM
(b) Volatile, slow, inexpensive correspond to () V: Read-Write NVM
(c) Nonvolatile, read-only correspond to () W: ROM
(d) Nonvolatile, read-write correspond to () X: SRAM

38. Refer to Example 5.16. Design a 4-bit serial subtractor and verify its correctness
by executing 11 � 9 ¼ 2 and 9 � 11 ¼ �2.

39. Refer to Example 5.16. Design an n-bit serial subtractor and verify its correct-
ness by executing 99. . .9 – 99. . .9 and see that the result is indeed 0.

40. Refer to Example 5.17. Design the instruction set architecture for an Accumu-
lator Computer to execute the following computation, assuming X¼[1, 2, 3,. . .,
N]

sum := 0
for i := 0; i < N; i++ {
sum = sum + X[i]

}

248 5 Systems Thinking

41. Regarding the software stack used in this book, which of the following state-
ments are/is correct?

(a) The Go compiler is a piece of firmware.
(b) The Go compiler is a piece of system software.
(c) The Linux Shell is a piece of application software.
(d) The Linux Shell is a piece of middleware.

42. Regarding the software stack used in this book, which of the following state-
ments are/is correct?

(a) The Web browser is a piece of firmware.
(b) The Web browser is a piece of middleware.
(c) The Linux operating system is a piece of system software.
(d) The Linux operating system is a piece of application software.

43. Regarding the cycle principle in Sect. 5.4, which of the following statements
are/is correct?

(a) An instruction cycle consists of multiple program cycles.
(b) An instruction cycle consists of multiple clock cycles.
(c) A program cycle consists of multiple instruction cycles.
(d) A program cycle consists of multiple clock cycles.

44. Regarding the robustness principle in Sect. 5.4, which of the following state-
ments are/is correct?

(a) Be conservative in what you do to others, be liberal in what you accept from
others.

(b) Be conservative in what you accept from others, be liberal in what you do to
others.

(c) Be tolerant of inputs, be strict on outputs.
(d) Be tolerant of outputs, be strict on inputs.

45. After a jump instruction finishes, the destination instruction should be executed.
What happens when the jump instruction finishes?

(a) The destination instruction is assigned to the program counter PC.
(b) The address of the destination instruction is assigned to the program

counter PC.
(c) The destination instruction is assigned to the instruction register IR.
(d) The address of the destination instruction is assigned to the instruction

register IR.

46. After a jump instruction finishes, the destination instruction should be executed.
What happens when jump instruction finishes?

(a) The address of the jump instruction is assigned to the program counter PC.
(b) The address of the destination instruction is assigned to the program

counter PC.

5.5 Exercises 249

(c) The address of the destination instruction is assigned to the instruction
register IR.

(d) The difference of the addresses of the destination instruction and of the jump
instruction is assigned to the instruction register IR.

47. When the following event happens, what exception occurs? Put the correct
capital letter in the parentheses of each line below. App exception denotes an
exception that occurs in the application program that does not cause hardware
error, interrupt or machine check.

(a) Execute a “divide by zero” operation () W: App exception
(b) ID stage sees an undefined opcode () X: Hardware Error
(c) CPU knows something is wrong but not what () Y: Interrupt
(d) The user moves the mouse () Z: Machine Check

48. When the Fibonacci Computer is executing code and the following situation
happens, what exception occurs? Put the correct capital letter in the parentheses
of each line below.

(a) The code does not terminate () W: Hardware Error
(b) ID stage sees opcode 111 () X: Interrupt
(c) The power is turned off () Y: Machine Check
(d) The user clicks the mouse () Z: No exception

49. Suppose the execution time of a program is 100 s, of which 80% is spent on
CPU processing, and 20% on accessing memory and the hard disk. Assume the
CPU clock frequency increases from 1 GHz to 1 THz, which is an enhancement
of about 1000 times. What is the execution time of the program on this enhanced
computer?

(a) 0.02 s
(b) 0.2 s
(c) 2 s
(d) 20 s
(e) 200 s

5.6 Bibliographic Notes

The chapter quotation by Confucius (孔子) is from the classic论语, or Analects. The
original Chinese text is “民可使由之不可使知之”, which has multiple interpreta-
tions. This particular translation from the abstraction perspective benefited from
discussions with Professor Jinshu Zhu of Xihua University. The quotation by Leslie
Lamport is from [1]. Luszczek, et al, presents the idea of using a few smartly design
benchmarks to represent many applications [2]. Bergman presents the Bergman
number system [3]. Discussion on Fibonacci number systems can be found in
[4]. The IEEE floating-point number standard is discussed in [5, 6]. Alkhatib,
et al, presents a vision of seamless intelligence of the IEEE Computer Society

250 5 Systems Thinking

[7]. The English translation of Head Zhou, quoted in Sect. 5.4.1, is from [8]. Postel
proposed the principle of robustness in [9]. John von Neumann proposed the
exhaustiveness principle in 1945. A reprinting can be found in [10]. Amdahl
presented the idea of Amdahl’s law in [11], although no formula can be found in
that short paper. TOP500 is a website maintaining performance data on the world’s
500 fastest computers [12].

References

1. Lamport L (2018) If you’re not writing a program, don’t use a programming language. https://
www.heidelberg-laureate-forum.org/video/lecture-if-youre-not-writing-a-program-dont-use-a-
programming-language.html

2. Luszczek PR, Bailey DH, Dongarra JJ, Kepner J, Lucas RF, Rabenseifner R, Takahashi D
(2006) The HPC Challenge (HPCC) benchmark suite. In: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, vol. 213, no. 10.1145, pp. 1188455–1188677

3. Bergman G (1957) A number system with an irrational base. Math Mag 31(2):98–110
4. Ahlbach C, Usatine J, Frougny C, Pippenger N (2013) Efficient algorithms for Zeckendorf

Arithmetic. Fibonacci Q 51(3):249–255
5. Severance C (1998) IEEE 754: an interview with William Kahan. Computer 31(3):114–115
6. Kahan W (1996) IEEE standard 754 for binary floating-point arithmetic. Lecture Notes on the

Status of IEEE, vol 754, no 94720-1776, p 11
7. Alkhatib H, Faraboschi P, Frachtenberg E, Kasahara H, Lange D, Laplante P et al (2015) What

will 2022 look like? The IEEE CS 2022 report. Computer 48(3):68–76
8. Nylan M (1993) The Canon of supreme mystery by Yang Hsiung: a translation with commen-

tary of the T’ai Hsuan Ching. SUNY Press, Albany
9. Postel J (1980) DoD Standard–Transmission Control Protocol–RFC 761. University of South-

ern California. https://datatracker.ietf.org/doc/rfc761/
10. Von Neumann J (1993) First draft of a report on the EDVAC. IEEE Ann Hist Comput

15(4):27–75
11. Amdahl GM (1967) Validity of the single processor approach to achieving large scale comput-

ing capabilities. In: Proceedings of the April 18–20, 1967, spring joint computer conference,
pp. 483–485.

12. TOP500. https://www.top500.org Web site

References 251

https://www.heidelberg-laureate-forum.org/video/lecture-if-youre-not-writing-a-program-dont-use-a-programming-language.html
https://www.heidelberg-laureate-forum.org/video/lecture-if-youre-not-writing-a-program-dont-use-a-programming-language.html
https://www.heidelberg-laureate-forum.org/video/lecture-if-youre-not-writing-a-program-dont-use-a-programming-language.html
https://datatracker.ietf.org/doc/rfc761/
https://www.top500.org

Chapter 6
Network Thinking

[The users of the World Wide Web] felt they were part of a
system, a new system of humanity collectively producing more
and more value.
Everybody would find mutual understanding with each other
across the Web, rather than fighting each other, sending each
other’s sons out to fight each other in the fields.
—Tim Berners-Lee, 2019

This chapter extends the principles in the previous chapters to networks, or more
precisely, computer networks. We use the familiar global Internet as the main
example. The Internet is a global internetwork (network of networks) connecting
many local networks and computers through the Internet Protocol (IP).

Network thinking studies and utilizes the networking aspect of computing to
generate computational and societal values. It has two basic concepts: connectivity
and protocol stack.

Connectivity refers to what and how nodes of a network are connected. We pay
special attention to two knowledge units: naming and topology. What nodes are in
the network? How to name them? How to find a specific node? How are the nodes
interconnected? Does the network structure change over time? Is the network
topology static, dynamic, or evolutionary? Students learn how to use a user-friendly
Web URL name, to access a web resource on a specific computer.

A protocol stack is a stack of layers of rules governing communication. It is used
to enable multiple nodes of a network to communicate with one another, in order to
automatically collaborate in accomplishing a common computational task. We
introduce how the Web over Internet protocol stack works. Key concepts involved
include: message passing, packet switching, interfaces of protocol layers, switch and
router. We also prepare students to do the Personal Artifact project by introducing
Web programming examples.

In addition, this chapter introduces network laws and responsible computing, as
the societal impact is most obvious on the Internet. We discuss network effect as
exemplified by Metcalfe’s law and the viral marketing phenomenon. Examples are
used to illustrate issues on security, privacy, and professional code of conduct.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
Z. Xu, J. Zhang, Computational Thinking: A Perspective on Computer Science,
https://doi.org/10.1007/978-981-16-3848-0_6

253

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3848-0_6&domain=pdf
https://doi.org/10.1007/978-981-16-3848-0_6#DOI

6.1 Network Terms

Often, a computational process involves not just one entity, but also a group of
interconnected entities, which may refer to or communicate with one another. Here,
an entity may be an abstract or real entity regarding a computer, a person, or a thing.
Here, a thing could be a physical thing, a document, an idea, or a concept.

A group of interconnected entities is called a network. The entities are called the
nodes of the network. For instance, all the one billion WeChat users form a network
with one billion nodes. As another example, all articles of computing form a network
of computer science literature. The nodes (articles) are interconnected by citations.
The nodes may refer to one another, but do not necessarily communicate with one
another by sending or receiving messages.

A computational process may treat a network as an object. For instance, we may
design a computational process to compute the topology of the network of WeChat
users. Then, the network is an input object, and the topology of the network is an
output object. A network may also be the subject of a computational process. For
example, a network of computers may be used to execute the above task of topology
computation: the network computes the topology.

Let us start with some terms of networking, by looking at parts of networks of
three universities, shown in Fig. 6.1.

A local area network (LAN) connects devices (shown as squares in Fig. 6.1) in
the same building or even on the same campus. A metropolitan area network
(MAN) connects LANs in the same city. A wide area network (WAN) spans
multiple cities or even multiple countries. These are demonstrated in Fig. 6.1.

Yuquanlu Campus UCAS Zhongguancun Campus

R
o
u
t
e
r

Router Router
Ethernet LAN WiFi LAN

R
o
u
t
e
r

R
o
u
t
e
r

R
o
u
t
e
r

USTC Campuses ShanghaiTech Campus
R
o
u
t
e
r

Router Router
Ethernet LAN WiFi LAN

MAN

Internet

Fig. 6.1 Illustrating parts of networks of UCAS and sister universities

254 6 Network Thinking

The University of Chinese Academy of Sciences (UCAS), the University of
Science and Technology of China (USTC) and the ShanghaiTech University
(ShanghaiTech) have campuses in Beijing, Hefei and Shanghai, respectively.
Their LANs and MANs are connected by a WAN called the China Science and
Technology Network (CSTNet), which is connected to and forms a part of the global
Internet.

An institution providing Internet connection services is called an Internet service
provider (ISP). The institution running CSTNet, also called CSTNET, is the ISP for
all students, faculties, and staffs of Chinese Academy of Sciences.

Suppose a student, Zhang Lei, is studying in a classroom on the Zhongguancun
campus of UCAS in Beijing. She wants to use her laptop computer to access a server
located in a machine room on the ShanghaiTech campus. Let us trace the connec-
tions and see the network terms involved.

• Host. Any device connected to a network is called a host (shown as a square in
Fig. 6.1). It could be a laptop computer, a printer, a server, or an environment
sensor. A host directly used by the user is called a client, which makes requests to
be served by another host called server. Zhang’s laptop computer is a client host,
and the server on the ShanghaiTech campus is a server host. Note that hosts do
NOT include networking devices discussed below, such as access point, hub,
switch, router, and gateway devices.

• Access Point (AP). Zhang uses a wireless protocol called WiFi to access the
Internet. Her laptop computer first needs to connect to an access point (AP). The
AP device converts wireless signals to wired signals and vice versa. The AP
device is part of the WiFi LAN and not explicitly shown in Fig. 6.1.

• Hub and Switch. A small LAN is often a bus structure realized by connecting a
few hosts to a central device called a network hub. Multiple small LANs can be
connected to form a bigger LAN to accommodate more hosts or to extend the
distance covered. A network switch connects multiple hosts or LANs. The same
protocol, e.g., Ethernet, must be used within a LAN, small or big. In such a
homogeneous network, hosts are said to be homogeneously connected.

• Router. What if we want to connect several networks that use different protocols?
Networking devices called routers are used to solve this internetworking prob-
lem, i.e., connecting multiple member networks into a bigger heterogeneous
network, e.g., the Internet. Each member network of the Internet may internally
use a different networking technology of its own choice, such as WiFi, Ethernet,
or Infiniband. Figure 6.2 shows how multiple routers (the brown boxes) connect

Router Router……

Beijing To other networks To other networks Shanghai

Ethernet
Switch

Gateway Gateway

WiFi
Switch

Fig. 6.2 Connecting two heterogeneous campus networks by routers

6.1 Network Terms 255

two heterogeneous member networks: the UCAS Beijing campus network using
WiFi, and the ShanghaiTech campus network using Ethernet.

• A gateway of a member network is the router connecting the member network to
a bigger network, e.g., Internet. In Fig. 6.2, the purple and green dots indicate
gateways for the Beijing network and the Shanghai network, respectively.

6.2 Connectivity

Connectivity refers to the structure of a network. Only when an entity is connected,
i.e., having become a node of a network, can it be accessed. Connectivity studies
problems related to naming and topology, such as the following:

• How to name the nodes of a network? How to find a specific node? How to refer
to a specific node?

• How are the nodes interconnected? Does the network structure change over time?
Is the network static, dynamic, or evolutionary?

It is customary to use a mathematical structure, called a graph, to represent a
network. A graph G ¼ hV,Ei is a pair of sets. Here, V ¼ {v1, v2, . . ., vn} is the set of
nodes. A node is also called a vertex. E¼ {e1, e2, . . ., em} is the set of edges or links.
Each edge connects two nodes. Figure 6.3 shows two networks. A directed edge
shows a one-way connection. An undirected edge is a two-way connection. Note that
node v1 connects to itself, while v3 does not connect to any node.

6.2.1 Naming

We specify the nodes of a network by naming, i.e., giving a name to every node. As
illustrated in Table 6.1, every network has a namespace, which consists of all names
of the network specified by a naming scheme.

v1 v2

v4
v3

e1

e2
e3

e4

v1 v2

v4
v3

e1

e2
e3

(a) (b)

Fig. 6.3 Networks can be represented as directed and undirected graphs. (a) An undirected graph,
(b) A directed graph

256 6 Network Thinking

A name is usually a string of characters. Whether a string is legitimate is
determined by a naming scheme, which is often specified by some technical stan-
dard. Three influential standards bodies are IEEE, IETF and W3C. They are all
professional volunteer organizations. Ethernet names and protocols are designed by
the Institute of Electrical and Electronics Engineers (IEEE). Internet standards
(called RFCs) are designed by the Internet Engineering Task Force (IETF). Web
names and protocols are designed by the World Wide Web Consortium (W3C).

Designing a namespace needs to consider the following issues:

• Uniqueness. Does a name map to a unique node? The email address namespace
enjoys uniqueness, but the namespace of personal names of a country’s popula-
tion does not have uniqueness. There may be multiple persons named Joan Smith,
causing name conflicts, which in turn may lead to wrong connections.

• Autonomy. Can a user create or change a name on his own? Such autonomy has
the advantage of convenience, but may lead to chaos. One may change a URL,
i.e., the name of a webpage. However, Web links to the old URL become invalid.
For many naming schemes, creating or modifying a name need to go through a
centralized process, involving an authority of name registry.

• Friendliness. Are the names user-friendly, i.e., understandable by humans? The
eight name schemes in Table 6.1 have decreasing user friendliness. “Joan Smith”
is much more understandable than “00-1E-C9-43-24-42”, which is the name of
the network interface circuitry in a computer, also called MAC address.

• Name conversion. An entity can have two namespaces. The Internet site with
domain name www.ict.ac.cn has an Internet Protocol (IP) address 159.226.97.84.
The Domain Name System (DNS) converts a domain name to its IP address.

6.2.1.1 The Namespaces of the Internet: Domain Names vs. IP
Addresses

Recall that the Internet is a global network of networks, connecting many local
networks and computers through a common set of protocols, particularly the Internet
Protocol (IP).

Table 6.1 Examples of Naming Schemes

Namespace Instance Remark

Personal name Joan Smith Personal names in a country

WeChat user ZhongguanVillager Any legitimate string per WeChat standard

URL www.ict.ac.cn/cs101 Universal Resource Locator of a webpage

Internet site www.ict.ac.cn Any domain name by IETF standards

Email address zxu@ict.ac.cn userName@domainName

IP address 159.226.97.84 Internet protocol address per IETF standards

Phone number 189-6666-8888 11 decimal digits by Telcom provider standards

MAC address 00-1E-C9-43-24-42 12 hexadecimal digits per IEEE standards

6.2 Connectivity 257

http://www.ict.ac.cn
http://www.ict.ac.cn/cs101
http://www.ict.ac.cn

Let’s put ourselves in the shoes of early Internet designers and ask this question:
How many names are needed to uniquely denote every node of the global Internet?

There are two types of nodes in the Internet:

• Internet hosts are computers connected to the Internet, such as our laptop PCs and
smartphones. Here, computers included Internet-connected devices such as
printers, TVs, and sensors, which can be viewed as embedded computers.

• Networking devices on the Internet, such as network routers and switches.

Every node of the Internet should be named. At a minimum, a node must have an
address, called the Internet Protocol address, or IP address. See Box 6.1 for a
comparison between names and addresses.

Two types of IP addresses are used today.

• IPv4 addresses. An Internet Protocol version 4 address (IPv4 address) occupies
32 bits, organized as a 4-field format xxx.xxx.xxx.xxx such as 159.226.97.84,
where each field is normally shown as a decimal number from 0 to 255. This IPv4
address format can generate 232, or over 4 billion, different IP addresses.

• IPv6 addresses. An Internet Protocol version 6 address (IPv6 address) occupies
128 bits. This IPv6 address format can generate 2128 different IP addresses.

If we assign a unique IP address to a node of the Internet, the IPv4 addressing
scheme can accommodate an Internet of over 4 billion nodes, including Internet
hosts and networking devices. In reality, multiple IP addresses can map to one node
(cf. RFC 791). Thus, the 32-bit IPv4 addressing scheme implies that the Internet can
have fewer than 4 billion nodes, and even fewer host computers. Today, we already
have more than 4 billion hosts on the Internet.

Longer address formats could have been used to accommodate more nodes. But,
longer address formats also consume more bit resources. To send a message from
node A to node B, the message needs to include the source address for A and the
destination address for B, besides the payload data of the message. For a short
message of 4-byte payload data with IPv4 addresses, we need to send at least 96 bits,
of which only 1/3 is payload, and 2/3 is IP address metadata information.

The Internet pioneers did a tradeoff in 1981 (RFC 791) by choosing a 32-bit
format for the IPv4 addressing scheme. Note that an IP address assignment to a node
is not permanent, and may be recycled. Still, in 2019, all IPv4 addresses worldwide
were assigned, leaving no free IPv4 addresses to allocate.

Fortunately, the IETF standards body created a much longer IPv6 address format
in 1995 (RFC 1883). If each node of the Internet is assigned a unique IP address, the
IPv6 address format can accommodate 2128 ¼ 232�296 nodes, or 296 times the
capacity of the IPv4 scheme.

258 6 Network Thinking

Box 6.1. Addresses vs. Names
A name is a string of characters used to denote an entity. Addresses are a
special form of names. An address can be directly used to access an entity,
while a non-address name needs to be first converted into an address before
accessing the entity denoted by the name.

For instance, www.ict.ac.cn is a name: the domain name of the website for
the Institute of Computing Technology, Chinese Academy of Sciences. To
access this website from a Web browser, what really happens is that this
domain name is converted by DNS into the corresponding IP address
159.226.97.84. This IP address is then used to access the website. It is difficult
to remember an IP address such as 159.226.97.84. Users prefer to use the more
user-friendly domain name www.ict.ac.cn.

A computer on the Internet can serve as a client host such as a user’s PC, a
server host such as a supercomputer, or a networking device such as a router. A
computer on the Internet can have one or more IP addresses. Multiple domain
names can be mapped to the same IP address. Conversely, the same domain
name can be served by multiple computers. A popular website, sometimes
called a hub node of the Internet, may need dozens of computers to serve
requests during peak hours.

Domain names are organized in hierarchies. The structure of the hierarchies can
be seen when reading a domain name from right to left. In www.ict.ac.cn, “cn” is the
top-level domain by country, “ac” is the second-level domain, and “www” is at the
lowest level. There are also generic top-level domains, such as “com” and “org” in
github.com and w3.org. There are over 1000 top-level domain names today. A
student named Fan Wang (范望) may register an Internet domain name as fan.
wang (Fig. 6.4).

org cn wang

w3 ac edu fan

ict siat ucas pku

lib www jcst www english

Fig. 6.4 Parts of the global
domain name hierarchies

6.2 Connectivity 259

http://www.ict.ac.cn
http://www.ict.ac.cn
http://www.ict.ac.cn
http://github.com
http://w3.org

6.2.1.2 The Namespace of the World Wide Web: URL

A uniform resource locator (URL) is a string that specifies the location of a Web
resource for a browser to easily access the resource. A web resource can be a
website, a webpage, a picture file on the Web, etc. Sometimes, people calls a URL a
web address. As illustrated in Fig. 6.5, a basic URL consists of three parts, separated
by “://” and “/”. There can be infinitely many web resources, thus infinitely many
URLs.

The first part specifies the scheme, which indicates a protocol. The most popular
protocol used on the Web is the hypertext transport protocol (HTTP), and its secure
version hypertext transport protocol secure (HTTPS). This book contains examples
of both protocols. Other protocol names include FTP for transferring a file from one
computer to another computer, and MAILTO for email.

The second part specifies the host, which indicates the name of an Internet host
computer. The host can be specified by its domain name or its IP address. When we
enter in the browser http://www.ict.ac.cn or http://159.226.97.84, we get the same
result, indicating the same host computer.

The third part specifies the path, which indicates where the resource is located on
the host, by specifying a file path name. Note that the HTTP root directory may be
different from the host computer’s operating system root directory. In Fig. 6.5, the
file path name is /cs101, e.g., indicating that the resource is located at cs101 in the
HTTP root directory of the host.

Two special URLs are noteworthy. First, when we enter in the browser a URL of
a website without a path (e.g., http://www.ict.ac.cn) or with only the HTTP root
(e.g., http://www.ict.ac.cn/), we are accessing the homepage of the website.

Second, when we enter in the browser the URL http://localhost, or equivalently
http://127.0.0.1/, this special host is reserved for the local computer (or local host),
where the browser is executing. The string “localhost” indicates the loopback
domain name of a computer, and 127.0.0.1 is its loopback IP address. Project
4 of this book will use local host extensively to develop and debug webpages.

http :// www.ict.ac.cn / cs101

Scheme Host Path
Protocol Name Domain Name

IP Address
A File Path Name

http :// 159.226.97.84 / cs101

Fig. 6.5 Anatomy of a
uniform resource locator
(URL)

260 6 Network Thinking

http://www.ict.ac.cn
http://www.ict.ac.cn
http://www.ict.ac.cn/

6.2.2 Network Topology

At any moment, the structure of a network is a graph, showing what nodes and edges
are in the network, and how the nodes are interconnected by the edges. This graph is
also called the topology of the network. The topology of a network may change with
time. Depending on how the network topology changes, we can classify networks
into three classes, as illustrated in Fig. 6.6.

• Static networks. Static networks do not change their nodes and edges. More
precisely, a network G ¼ < V, E > is a static network, if the node set V and the
edge set E do not change over time. In Fig. 6.6, the fully connected graph and the
star network are both static networks.

• Dynamic networks. A dynamic network does not change its nodes, but may
change its edges. In Fig. 6.6, the bus and the crossbar switch networks are both
dynamic networks. At one moment, the bus may actually connect the processor
(P) and the memory (M). At the next moment, the bus may actually connect the
memory (M) and the input device (I). The bus supports a shared-media network,
while the crossbar supports a switching network.

• Evolutionary networks. Evolutionary networks change both nodes and edges
over time. An example is the network of all webpages on the World Wide Web.
The node set V (the set of all webpages) and the edge set E (the set of Web links)
both constantly change over time.

(a) (b)

v1 v2

v4
v3

v1 v2

v5

v3

v4

(c) (d)

P M I
P M I

Fig. 6.6 Examples of static and dynamic networks. (a) A fully connected graph, (b) a star network.
Nodes connected by (c) a bus or by (d) a crossbar switch

6.2 Connectivity 261

In Fig. 6.6d, three devices (circles) interconnect to one another through a crossbar
switch (rectangle). The three devices are the processor (P), the memory (M) and the
input device (I). Each device is connected to both an input port and an output port of
the crossbar switch. For instance, the processor (P) is connected to the red input port
and the purple output port in Fig. 6.6d. This is redrawn in Fig. 6.7, where both P
nodes denote the same processor. A device may be able to send messages and
receive messages at the same time. In practice, an input port and an output port
can be implemented as one port. Such a port capable of simultaneous bidirectional
communication is said to work in the full-duplex mode. That is, full-duplexing
allows data to flow into and out of a port at the same time.

The crossbar switch is actually a fully connected graph, as shown in Fig. 6.7. At
any moment, all or parts of the edges are active. A crossbar switch is more powerful
than a bus. It enables all devices to connect to one another at the same time. A bus
can only connect two devices at a time, except for broadcasting, where a device
sends a message to all devices on the bus.

Example 6.1. How Network Thinking Helped Create Modern Search Engines
Network thinking offers a new perspective to look at problems and can lead to
innovative solutions. A case in point is search engine design. Early search engines
computed search results by matching the key-words in search queries to the contents
of webpages (nodes). These first-generation search engines only utilized nodes of the
network of webpages.

Around 1996, Jon Kleinberg, Robin Li (李彦宏), and Larry Page, independently
observed a phenomenon: Web links (edges) also significantly influence the rele-
vance of search results. They utilized both nodes and edges to develop the second-
generation search engines with much better results. This approach more fully utilizes
network thinking and created Google and Baidu companies, serving billions of users
and generating annual revenue over $100 billion.

☶

P M I

P M I
P M

I

Fig. 6.7 Expanded illustrations of a network of three devices interconnected by a crossbar switch

262 6 Network Thinking

6.3 Protocol Stack

A protocol is a set of rules enabling two nodes of a network to communicate with
each other, in order to automatically collaborate in accomplishing a common
computational task. A protocol stack is a stack of layers of protocols which work
together. This section introduces the Web over Internet protocol stack, to elaborate
the basic concepts of communication in a computer network.

6.3.1 The Web over Internet Stack

A basic innovation of the Internet is to use packet switching to replace the circuit
switching technology used in traditional telecommunication networks.

• Circuit switching. When two parties are having a telephone conversation lasting
10 min over a telecommunication network, a physical circuit is established and
dedicated to this task during the entire time period of conversation. No other
person can use the resource of the circuit for this period of 10 min.

• Packet switching. When two parties are having a telephone conversation lasting
10 min over the Internet, a person’s utterances are viewed as digital messages
communicated to the other person. Each message is divided into a number of
small packets, which are sent together with packets from other people or devices,
over the same communication channel (circuit). In other word, the same channel
can accommodate multiple telephone conversations in this period of 10 min.

Example 6.2. Comparison of Circuit Switching and Packet Switching
Three students each want to download a file from the Internet over a shared
communication channel, as shown in Fig. 6.8. Suppose the communication channel
has a bandwidth of 10 Mbps (million bits per second) and all three students start
downloading at time 0. How much time does each of these downloading tasks take?

Figure 6.8 shows the Internet as a cloud picture, where three files are stored. The
circuit switching approach works as shown in Fig. 6.8a. Suppose student Smith’s
downloading request is first received by the system. A dedicated, end-to-end com-
munication circuit is established between the file and Smith’s PC. Then the system
transmits file Autumn.bmp from its source server to the destination computer
(Smith’s PC). Let us simplify matters by further assume that all overheads are
ignored. Then, because each byte has 8 bits, the first downloading task takes

T1 ¼ 9:14� 8=10 ¼ 7:31 s:

In other words, the task to download Autumn.bmp finishes at T1 ¼ 7.31 s.
Similarly, the second task to download hamlet.txt only needs

6.3 Protocol Stack 263

T2 ¼ 0:182� 8=10 ¼ 0:146 s:

However, it starts at 0 s and finishes at T1 + T2 ¼ 7.46 s.
The third task to download ucas.bmp needs

T3 ¼ 0:81� 8=10 ¼ 0:648 s:

The third task starts at 0 s and finishes at T1 + T2 + T3 ¼ 8.11 s.
With circuit switching, a dedicated circuit is established between the two parties

of a communication session. Only at the end of the session is another dedicated
circuit established (the circuit is “switched”) to serve another session.

Circuit switching has the advantage of guaranteeing the quality of service of a
communication session, which is not interfered by other communication sessions.
This is especially important for real-time services such as telephone voice commu-
nication, where interference may cause voice sound quality degradation. Circuit
switching also has disadvantages. Dedicated use of a channel implies that the
channel capacity is not necessarily fully utilized. Furthermore, a communication
session forces other sessions to wait till it finishes.

With packet switching, each of the three files (messages) is divided into a number
of packets (e.g., each of 1 KB), and the channel statistically mixes and transmits the

(a) (b)

Smith Wang Zhang Smith Wang Zhang

Autumn.bmp, 9.14 MB
hamlet.txt, 182 KB
ucas.bmp, 810 KB

Transmit packet 1 of hamlet.txt
Transmit packet 1 of Autumn.bmp
Transmit packet 1 of ucas.bmp
Transmit packet 2 of ucas.bmp
Transmit packet 2 of Autumn.bmp
Transmit packet 2 of hamlet.txt

Transmit Autumn.bmp
Transmit hamlet.txt
Transmit ucas.bmp

Autumn.bmp, 9.14 MB
hamlet.txt, 182 KB
ucas.bmp, 810 KB

1

2

3

1 2 3

1
2
3
4
5

6

1 3
46

2

5

Fig. 6.8 Explaining circuit switching versus packet switching. (a) Circuit switching, (b) Packet
switching

264 6 Network Thinking

packets of all three messages, as illustrated in Fig. 6.8b. It is left as an exercise to
show that the three downloading tasks starting at time 0 finish at T1 ¼ 8.11 s,
T2 ¼ 0.44 s, and T3 ¼ 1.44 s, respectively. The three communication tasks proceed
simultaneously, without waiting for one another to finish.

☶

The following Table 6.2 shows the format of an Ethernet packet. Each packet has
a body and a header. The body (in bold) is the payload data of the packet. The
header, parts of which may come after the payload data, includes control informa-
tion, addresses, and Cyclic Redundancy Check (CRC) error check information.

Another basic innovation of the Internet is to use multiple layers of protocols,
stacked on top of one another, to form the widely used TCP/IP protocol stack. Each
layer serves a particular purpose of networking by transferring different types of
packets in different ways. Together, the stack of multiple layers of protocols
effectively supports the global Internet we have today.

This idea was extended later by a Web layer on top of the Internet. This HTTP
protocol enables accessing of hyperlinked hypermedia resources, such as webpages.
Table 6.3 shows parts of the Web over the Internet protocol stack. Let us elaborate
this five-layer stack from bottom up.

• Layer 1 is called the physical layer. It provides physical communication channels
by wired electrical cables or optical fibers, as well as wireless waveforms. Layer
1 works on physical signals of individual bits of 0’s and 1’s.

• Layer 2 is called the data link layer. It reliably sends a layer-2 packet, called a
frame, between two homogeneously connected devices, including hosts and
networking devices. Two widely used protocols are Ethernet (as specified by
the IEEE 802.3 standard) and WiFi (as specified by the IEEE 802.11 standard).

Table 6.2 The Ethernet packet format, where 42-1500 bytes are used for the payload

7 1 6 6 2 42-1500 4

Preamble Frame
Delimiter

Destination
MAC Address

Source
MAC Address

Type Data
(Payload)

CRC

Table 6.3 Parts of the Web over Internet protocol stack

Layer Protocol Purpose

Application
Layer (Layer 5)

HTTP Access hypertext resources on a Web
server from a Web client

Transport
Layer (Layer 4)

TCP Reliably transfer packets between two
Internet hosts

Network Layer
(Layer 3)

IP Transfer packets between two Internet
hosts in the best-effort way

Data Link
Layer (Layer 2)

Ethernet, WiFi Reliably transfer packets between two
homogeneously connected devices

Physical Layer
(Layer 1)

Wired or wireless, electrical or
optical, cables or waveforms

Provide physical communication chan-
nels
Transfer signals of individual bits

6.3 Protocol Stack 265

• Layer 3 is called the network layer, which has only a single protocol: IP (the
Internet Protocol). It sends a layer-3 packet, called a datagram, between two
Internet hosts, without guaranteeing reliable packet delivery. This is called the
best-effort approach. The two Internet hosts are not necessarily homogeneously
connected, but may be connected through one or more routers.

• Layer 4 is called the transport layer. A widely used protocol at this layer is TCP
(the Transmission Control Protocol). It reliably sends a layer-4 packet, called a
TCP packet, between two Internet hosts.

• Layer 5 is called the application layer. There may be several application layers
stacked on top of one another. We only consider the Web application layer using
HTTP (the Hypertext Transfer Protocol). Its purpose is to easily access
hyperlinked hypertext resources, such as webpages, across the Internet.

6.3.1.1 How Does the Protocol Stack Work? Fetch a Home Page from
a Server

Let us return to the example of Zhang Lei’s using her laptop computer in Beijing to
access a server in Shanghai, via the Web over Internet protocol stack.

In her Web browser, Zhang enters the following information to access the server:
http://www.shanghaitech.edu.cn/ which has three fields. HTTP is the protocol

name. This protocol is used to transfer Web requests and responses. The domain
name www.shanghaitech.edu.cn identifies the website of ShanghaiTech, which is
translated by DNS to the IP address 119.78.254.67 of the website server. The third
part is a slash, indicating the home page, i.e., the introductory webpage of the
website.

Upon receiving this HTTP request, the Web server at 119.78.254.67 sends back
an HTTP response message, i.e., the contents of the home page. The message is
divided into a number of HTTP packets.

In Fig. 6.9, an HTTP packet is indicated as a pink box, which is handed over to
the TCP layer as the TCP packet body. The TCP layer adds a TCP header (shown as
a blue box) to form a TCP packet. The TCP packet is handed over to the IP layer as
the IP packet body. The IP layer adds an IP header (shown as a yellow box) to form
an IP packet. Finally, the IP packet is handed over to the data link (Ethernet) layer as
the packet body. The Ethernet layer adds an Ethernet header (shown as a red box) to
form an Ethernet packet. We ignore the physical layer in this book.

Note that all these operations are automatically done in the server host. When a
data link packet arrives at the destination host, i.e., Zhang’s laptop computer, a
reverse process takes place to recover the HTTP packet data.

Let us ask and answer several questions to better understand the protocol stack
approach with packet switching communication.

• Does Zhang need to worry about TCP/IP and Ethernet when surfing the Web?
The answer is NO. This is the beauty of the protocol stack approach.

266 6 Network Thinking

http://www.shanghaitech.edu.cn/
http://www.shanghaitech.edu.cn

A user at one layer does not have to worry about the layers below. The protocol
stack provides two types of interfaces. When Zhang’s Web browser in Beijing
communicates with the Web server in Shanghai, both parties use a peering interface
via the HTTP protocol, shown by horizontal dashed lines in Fig. 6.9. Here, peering
means that the Web browser in Beijing acts as if it directly talks to its peer, the Web
server in Shanghai, using a common HTTP protocol.

A software developer, however, implements the HTTP protocol using a service
interface provided by the TCP layer, shown by vertical solid lines in Fig. 6.9. The
TCP layer provides services to the HTTP layer via the service interface.

• Can the Web server in Shanghai send an HTTP packet to Zhang’s Web browser
in Beijing, without also sending a data link layer packet, e.g., an Ethernet frame?

The answer is NO.

One cannot send a high layer packet without also sending a packet of every layer
below. When a packet enters a network, it is in a data link layer format and travels as
wired and wireless signals.

An HTTP packet must be repackaged as a TCP packet, which is then repackaged
as an IP packet, which is then repackaged as an Ethernet packet, before it can be sent
to the network as physical signals. This is similar to how post offices send letters.
Letters are wrapped in envelopes, adding header information such as addresses,
whether the letters should be express mailed, etc. The letters in envelopes are then
wrapped in post office’s packages, and so on.

• Can the server computer in Shanghai send an Ethernet packet to Zhang’s personal
computer in Beijing?

HTTP HTTP

TCP TCP

IP IP

Beijing Shanghai

WiFi
IP
TCP
HTTP

Ether
IP
TCP
HTTP

Host WiFi Switch Router1 Router2 HostEthernet Switch

33 121 2

Fig. 6.9 Illustrating how a packet traverses the Web over Internet stack

6.3 Protocol Stack 267

The answer is YES, as long as there is a homogeneous network connecting the
two hosts via the same Ethernet protocol.

But the reality is like Fig. 6.9, to accommodate heterogeneity of the Internet. The
server host sends an HTTP packet, wrapped as an Ethernet packet, to the Ethernet
switch (①). The switch opens the packet to reveal the Ethernet header (shown as a
white box in Fig. 6.9), and then adds a new header (with a new MAC address) to
form a new Ethernet packet (②). When the packet arrives at Router2, the router
opens the packet to reveal both the Ethernet and the IP headers (the two white
boxes), and then form a new Ethernet packet by reformatting the packet and adding a
new Ethernet header (③). Similar steps take place at Router1 (③) and the WiFi
Switch (②), and then a WiFi packet arrives at the laptop computer host (①). Note
that when Router1 (③) reformats the packet, it converts an Ethernet packet into a
WiFi packet by adding a WiFi header.

• What is actually sent over a network?
Bit strings of 0’s and 1’s.

Any packet is eventually encapsulated as one or more physical layer packets,
which travel as wired or wireless signals. A physical layer packet is sent through
electrical cables, electromagnetic waveforms or optical fibers, in a bit string of 0’s
and 1’s. A 0 may be represented as a LOW voltage pulse or a LIGHTOFF state,
while a 1 may be represented as a HIGH voltage pulse or a LIGHTON state.

• When a message is sent from a source host computer A to a destination host
computer B, do all packets of the message travel through the same physical path
from host A to host B?

Not necessarily.

The global Internet has redundancy built in, to cope with traffic congestions and
faults. This redundancy is a reason why we see many fault events reported every day
worldwide, affecting parts of the Internet, but the global Internet as a whole has
never gone down.

An example is shown in Fig. 6.10, where square boxes such as A, B, C, and D
denote hosts, and the remaining nodes denote networking devices (switches and
routers). There are multiple physical paths from host A to host B. When host A sends

U VT

Beijing Shanghai

A

B

X Y

Z

W

Hefei ShenzhenDC

Fig. 6.10 Illustrating redundancy of the Internet: there are multiple paths from host A to host B

268 6 Network Thinking

a 99-packet message to host B, it may well be the case that the first packet travels
along the physical path A-T-X-Y-W-B, the 49th packet traverses path A-T-U-V-W-
B, the 99th packet traverses path A-T-X-Z-Y-W-B, etc.

It may happen that the 49th packet arrives at host B before the first packet. Each
packet comes with a packet number. The complete message is reassembled from the
packets by their numbers, when all packets arrive at hots B.

As long as there is a valid path from A to B, a message can be communicated,
even though other nodes or edges may be broken. For instance, when node T is
down, host A cannot communicate. But, the remaining hosts B, C and D can still
communicate with one another.

6.3.2 Elementary Web Programming

We introduce several Web programming examples to deepen the understanding of
protocol stack. They also prepare students for the Personal Artifact project, which
asks a student to create a dynamic webpage. Here, dynamic means that the contents
or format of a webpage may change when displayed in a browser. In contrast, a static
webpage does not change its contents or format.

Only the basic HTML/CSS/JavaScript knowledge is introduced. Students are
suggested to transfer the Go programming knowledge learnt to Web programming.
They are also encouraged to learn any additional knowledge needed, by referencing
the library of Personal Artifacts examples in the Supplementary Material.

6.3.2.1 Create a Web Server and Static Webpages

To create a Web server, add the following WebServer.go file in the working
directory. The code uses the net/http package to create a Web server.

> cat WebServer.go
package main
import "net/http"
func main() {
http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request)

{
http.ServeFile(w, r, r.URL.Path[1:])

})
http.ListenAndServe(":8080", nil)

}
>

Then, run the program WebServer.go in background.

6.3 Protocol Stack 269

> go run WebServer.go &
[1] 72
>

The ‘&’ symbol at the end of a command indicates that the command runs in the
background: Although control returns back to the shell, the WebServer program is
still executing (with a process ID 72), and ready to accept Web requests.

As a second step, add the myFirstWebPage.html file to the working directory.
This is probably the student’s first webpage. The myFirstWebPage.html static
webpage is explained in Example 6.3.

As a third step, open a Web browser and enter the following URL

http://127.0.0.1:8080/myFirstWebPage.html

Recall that a Web URL has three parts separated by “://” and “/”. The domain
name in this case is the loopback IP address of the student’s laptop computer (the
local host). We can also use the equivalent URL http://localhost:8080/
myFirstWebPage.html. Port number 8080 is a default port for HTTP.

http :// 127.0.0.1:8080 / myFirstWebPage.html

Protocol Domain Name Path

The above browser command will display a webpage shown in Fig. 6.11.

Example 6.3. Look Inside My First Webpage: myFirstWebPage.html
A webpage, as shown in Fig. 6.12, is expressed as Hypertext Markup Language
(HTML) code, which is enclosed by a <html> . . . </html> pair and consists of a
head and a body. The most recent version of HTML is HTML5.

Fig. 6.11 Brower display of myFirstWebPage.html

270 6 Network Thinking

In the head part, <meta charset¼"utf-8"> specifies the character set as UTF-8,
and the <title>. . .</title> pair specifies the title of the myFirstWebPage.html
document as “My First Static Webpage”. The title does not show up in the webpage
itself when the HTML document is displayed.

There are three types of code in the body part. It pays for the lecturer to encourage
students to play with the first webpage by changing different elements and items and
then redisplay, to quickly appreciate the HTML and CSS code.

• Pure HTML code. One example is the <h1> . . . </h1> pair which displays the
enclosed content “Hello, World!” as level-1 heading. Another example is a
paragraph enclosed in a <p> . . . </p> pair. There is only one paragraph in
the webpage myFirstWebPage.html. It contains two items: an HTML5 logo
image specified by a pair, and a text phrase “The HTML5 logo is
shown on the left”. The src¼". . ." item specifies the source URL (hyperlink) of
the image. The HTML5 logo image is retrieved from the specified source URL
(hyperlink) https://www.w3.org/html/logo/downloads/HTML5_Badge.svg. The
protocol is “https”, the domain name is “www.w3.org”, and the local path
name for the image file is “html/logo/downloads/HTML5_Badge.svg”.

• Cascading style sheets (CSS) code specifying the format (presentation style) of
the webpage. For instance, the item style¼"float:left;width:30px;height:30px;" in
the paragraph says that the HTML5 logo image is displayed with the stated style:
floating to the left of the text phrase, 30-pixel wide, and 30-pixel high.

• JavaScript code enclosed between a pair of<script> and</script>. In Fig. 6.12,
this JavaScript part happens to be empty.

A Web server hosts the webpage files (called resources). The Web browser
retrieves a Web resource, such as myFirstWebPage.html, to a student’s laptop

<html>
<head>

<meta charset="utf-8">
<title>My First Static Webpage</title>

</head>
<body>

<h1> Hello, World! </h1>
<p>

<img src="https://www.w3.org/html/logo/downloads/HTML5_Badge.svg"
style="float:left;width:30px;height:30px;">
The HTML5 logo is shown on the left

</p>
<script>
</script>

</body>
</html>

Fig. 6.12 A student’s first webpage: myFirstWebPage.html

6.3 Protocol Stack 271

http://www.w3.org/html/logo/downloads/HTML5_Badge.svg
http://www.w3.org

computer. The browser interprets it and displays the result. This is also called
rendering the webpage. In this process, the browser automatically retrieves addi-
tional resources such as the HTML5 logo image by the hyperlink https://www.w3.
org/html/logo/downloads/HTML5_Badge.svg.

☶

Example 6.4. A Static Webpage Displaying the Date of Next Children’s Day
We start to use JavaScript code in staticChildrensDay.html, as shown in Fig. 6.13.
JavaScript is an object-oriented language. An object is a data structure with one or
more components, each of which can be specified by the dot notation. An object may
also contain a number ofmethods that operate on the data structure. Each method call
is also specified by the dot notation. For instance, in the statement

document.getElementById("childrensDay");

document is an object, getElementById is a method, "childrensDay" is a parameter
denoting the paragraph’s ID. The statement says to get the element by ID in the
HTML document, where ID is specified by the string "childrensDay".

The example code contains a single paragraph element. Its behavior is not
directly specified in the <p>. . .</p> pair, but rather via the id "childrensDay".
The <p>. . .</p> pair only specifies the location of the paragraph element on the
webpage, but does not specify the content of the paragraph. Four lines of JavaScript
code are included in the pair <script> . . . </script>. They specify the style and the
content of the paragraph element.

• var x ¼ document.getElementById("childrensDay"); declares an object x and
initializes it with the paragraph element denoted by ID childrensDay. Hereafter, x
is the paragraph with id "childrensDay".

• x.style.fontSize ¼ "60px"; sets the font size of paragraph x to be 60 pixels.
• x.style.color ¼ "purple"; sets the color of paragraph x to be purple.
• x.innerHTML ¼ "2021.06.01"; sets the content of paragraph x to be

"2021.06.01".

☶

6.3.2.2 Create a Dynamic Webpage

The previous example staticChildrensDay.html generates wrong outputs after June
1, 2021. To fix this error, we use the following JavaScript code to dynamically check
and output the correct date, as shown in Fig. 6.14.

The program’s logic is simple: (1) get the current values of year and month using
the system provided Date object; (2) if the month is June or later, increments year.

We add 1 to date.getMonth() because JavaScript counts months from 0 to 11.

272 6 Network Thinking

http://www.w3.org/html/logo/downloads/HTML5_Badge.svg
http://www.w3.org/html/logo/downloads/HTML5_Badge.svg

<html>
<head>

<meta charset="utf-8">
<title>Display the date of next Children's Day</title>

</head>
<body>

<h1 style="text-align: center">Date of Next Children's Day</h1>
<p style="text-align: center" id="childrensDay" ></p>
<script>

var x = document.getElementById("childrensDay");
x.style.fontSize = "60px";
x.style.color = "purple";
x.innerHTML = "2021.06.01";

</script>
</body>

</html>

(a)

(b)

ID = Element Name
Style
Content

(c)

Fig. 6.13 A static webpage staticChildrensDay.html: code and output. (a) Sample code for
displaying the date of next Children’s Day. (b) Output when the two lines of red code are deleted.
(c) Output when the two lines of red code are present

6.3 Protocol Stack 273

6.4 Network Laws and Responsible Computing

Computer networks, especially the Internet, have shown great impact on human
society, including our work, life, and culture. During the past decades, notable
phenomena and principles were observed, which continue to evolve and impact
society. We discuss several such phenomena and principles, as well as practical
guides to responsible computing.

(a)

<html>
…
<body>

<h1 style="text-align: center">Date of Next Children's Day</h1>
<p style="text-align: center" id="childrensDay" ></p>
<script>

var x = document.getElementById("childrensDay");
x.style.fontSize = "60px";
x.style.color = "purple";
var date = new Date;
var year = date.getFullYear();
var month = date.getMonth() + 1;
if (month >= 6) year = year + 1;
x.innerHTML = "June 1, " + year;

</script>
</body>

</html>

ID = Element Name
Style
Content

(b)

Fig. 6.14 A dynamic webpage ChildrensDay.html: code and output. (a) Code to display the
dynamic date of next Children’s Day. (b) Browser output of ChildrensDay.html

274 6 Network Thinking

6.4.1 Bandwidth, Latency, and User Experience

We want a computer network to have high bandwidth and low latency. Bandwidth
is the bit rate by which messages are transmitted over a network, while latency is the
time taken to transmit a message.

Exact meanings of bandwidth and latency vary. Two types are often used.

• Minimal latency and maximal bandwidth. The total transmission time t of a
message of length m bits transmitted between two parties can be estimated by
the followingHockney's formula, t¼ t0 + m/r1. Here, t0 is the minimal latency,
i.e., the time needed to transmit a 0-bit message; and r1 is the maximal band-
width achieved when the message length m approaches infinity.

• User-experienced bandwidth and latency. For a given message of length m,
define the user-experienced latency as the total transmission time t and user-
experienced bandwidth as the ratio m/t.

Recall Keck’s law when we discuss the Wonder of Exponentiation in Sect. 1.3.2.
Technology advances have enabled the exponential growth of the data transmission
rate of optical fibers. The maximal bandwidth achieved in the so called hero
experiments, roughly equal to r1, increased about 100 times every decade, as
shown in Table 6.4. Note that t0 and r1 represent extreme values. Latency t0 here
means the startup overhead of a message transmission, i.e., the minimal latency.
Bandwidth r1 is is the maximal bandwidth.

Table 6.4 also shows the total transmission time t of a message of length m bits,
assuming different values of t0 and r1.

6.4.1.1 Bandwidth and Latency: Extreme and User-Experienced Values

Let us look at Table 6.4 again. Assume a message of length m ¼ 1 GB ¼ 8 Gb is
transmitted on a network with startup latency t0 ¼ 1 ms and a maximal band-
width r1 ¼ 10 Tbps. The total transmission time is

Table 6.4 Bandwidth growth of a single optical fiber in hero experiments

Time of
experiment

Maximal bandwidth
achieved r1

Time t to Transmit
1 GB

Time t to Transmit
1 KB

t0 ¼ 1 μs t0 ¼ 1 ms t0 ¼ 1 μs t0 ¼ 1 ms

1975 4.50E+07 bps, or 45 Mbps 178 s 178 s 0.2 ms 1.2 ms

1984 1.00E+09 bps, or 1 Gbps 8 s 8 s 9 μs 1 ms

1993 1.53E+11 bps, or 153 Gbps 52 ms 53 ms 1.1 μs 1 ms

2002 1.00E+13 bps, or 10 Tbps 0.8 ms 1.8 ms 1 μs 1 ms

2013 8.18E+14 bps, or 818 Tbps 11 μs 1 ms 1 μs 1 ms

We thank Mr. Jeff Hecht of IEEE to provide Donald Keck’s original data

6.4 Network Laws and Responsible Computing 275

t ¼ t0 þ m=r1 ¼ 1 msþ 8 Gb=10 Tbps ¼ 0:0018 s ¼ 1:8 ms:

In contrast, the user-experienced latency is t ¼ 1.8 ms, and the user-experienced
bandwidth is m/t ¼ 8 Gb/1.8 ms ¼ 4.44 Tbps.

Let us look at Table 6.5, which shows a network closer to the reality experienced
by an ordinary home user with a 1-Gbps optic fiber subscription. For short messages
of m ¼ 1 KB and a high startup latency t0 ¼ 1 s, the user actually gets only a
bandwidth of 8 Kbps.

6.4.1.2 Data Compression: Lossless and Lossy Compressions

Data compression is the technique used to reduce the size of a file, such that a file
can take less storage space and transmission time. Lossless compression can reduce
the size of a file without losing information. Lossy compression could lose infor-
mation when reducing the size of a file. With lossy compression, the original file
cannot be recovered from a compressed file.

The Linux operating system comes with a lossless compression command called
gzip. Try this compression command

> gzip Autumn.bmp

and compare Autumn.bmp to the compressed file Autumn.bmp.gz, to see how much
the file size is reduced. The command gzip is lossless, in that no information is lost.
We can execute a decompress command:

> gzip -d Autumn.bmp.gz

to recover the original file Autumn.bmp.
In general, when compressing a program file or a scientific data file, we should

use lossless compression. This is due to the fact that a single faulty bit could
invalidate the entire file. On the other hand, lossy compression can be used with
multimedia such as image, video, and sound files. We can reduce file size while
losing some resolution (quality) of the multimedia file.

Table 6.5 Examples of user-experienced bandwidth and latency given r1 ¼ 1Gbps

Minimal latency
t0

m ¼ 1 GB m ¼ 1 MB m ¼ 1 KB

t m/t t m/t t m/t

0.000001 s 8 s 1 Gbps 8 ms 1 Gbps 9 μs 0.89 Gbps

0.001 s 8 s 1 Gbps 9 ms 0.89 Gbps 1 ms 7.9 Mbps

0.1 s 8.1 s 0.99 Gbps 0.108 s 74 Mbps 0.1 s 80 Kbps

1 s 9 s 0.89 Gbps 1.008 s 7.9 Mbps 1 s 8 Kbps

276 6 Network Thinking

6.4.2 Network Effect

Since the invention of ARPANET in the 1960s, the global Internet has grown
significantly in its scale and impact to society. Some facts and projections are
summarized in Table 6.6. The impact of a network can be beneficial, harmful, or
both. When the impact is beneficial, we often call it the network value.

Network effect refers to the phenomenon that a node derives value from the
network, not from itself. An isolated node, e.g., a standalone laptop computer, has no
impact to and receives no impact from the network. But when the laptop computer
joins the Internet, it obtains much more value. This additional value is the network
effect, in contrast to the standalone value. Network effect has two notable special
cases: superlinear total and viral growth.

• Superlinear total. The total impact of a network is more than the linear summa-
tion of the impacts of its nodes. In other words, with a network of n nodes, the
total impact of the network to society is super-linear, i.e., more than order of n.

• Viral growth. The size of the network can grow quickly like a virus spreading.

6.4.2.1 Metcalfe’s Law and Reed’s Law

The superlinear total feature of the network effect has been studied by scholars in
computer science and other fields. People proposed observations and viewpoints,
and some of which became known as “laws”. Two of the most popular are
Metcalfe’s law which postulates a quadratic relationship, and Reed’s law which
postulates an exponential relationship.

These two laws are summarized in Box 6.2. They have caused extensive discus-
sions not only in the scientific and technology circles, but also in social sciences and
business communities.

Table 6.6 The Internet’s historic scale growth trend and exemplar techniques

Time # Nodes Exemplar Techniques

1960s A few Packet Switching Network

1970s Thousands TCP/IP, Ethernet, Router

1980s 100 thousand Client-Server Computing

1990s Million World Wide Web

2000s 100 Million Cloud Computing

2010s Billions Smartphones, Mobile Internet

2020–2050 Trillions Internet of Human-Cyber-Physical Systems

6.4 Network Laws and Responsible Computing 277

Box 6.2. Network Effect Laws
Metcalfe’s law (V / n2) is an observation made in 1980 by Robert Metcalfe,
an American engineer and the inventor of Ethernet. It says that the value V of a
network of n nodes is proportional to n2, that is, the effect of the network is
proportional to the square of the number of nodes of the networked system.

Reed’s law (V / 2n) is an observation made in 2001 by David Reed, an
American computer scientist and the designer of the User Datagram Protocol
(UDP) of the Internet protocol stack. Reed’s law says that the value V of a
network of n nodes can scale exponentially with n, because the network can
form 2n subgroups.

A common criticism to these laws is that they lack support from real-case data,
although they may have captured some intuitive truth.

Recently, researchers used real data from two companies to validate the network
effect laws. The results show that Facebook and Tencent data indeed validate
Metcalfe’s law.

Let us make two assumptions: (1) the number of nodes, n, is measured by the
Monthly Active Users (MAUs); and (2) the value of a network is measured by the
annual revenue of the company. Then, the revenue and MAU data of Facebook and
Tencent, from the year 2003 to the year 2019, fit the following equations:

Facebook0s Value ¼ 9:69� 10�9 � n2 USD, RMSD ¼ 4:58 Billion USD

Tencent0s Value ¼ 9:67� 10�9 � n2 USD, RMSD ¼ 4:30 Billion USD

In other words, real data do show that V / n2. RMSD is an acronym for the Root
Mean Square Deviation, a fitting error metric. They are in the range of 4.30–4.58
billion US dollars, small numbers comparing to Facebook’s revenue of 70.7 billion
US dollars in 2019.

In fact, real data fit a “cube law” even better, with smaller RMSD.
Facebook0s Value ¼ 4.44 � 10�18 � n3 USD, RMSD¼0.81 Billion USD

Tencent0s Value ¼ 5:73� 10�18 � n3 USD, RMSD ¼ 3:38 Billion USD

The value of a network falls somewhere between Metcalfe’s law and Reed’s law.
It is also interesting to note that the per-user revenue numbers of Facebook and

Tencent follow a similar growth trend, shown in Fig. 6.15. In 2018, each user
contributed about 24 US dollars to a company’s revenue.

278 6 Network Thinking

6.4.2.2 The Viral Marketing Phenomenon

Viral marketing refers to the following phenomena and practices: (1) viruses,
including biologic viruses and computer viruses, spread wide and fast; (2) people
learn from how a virus spreads to grow the market of a desirable computing product
or service; (3) some computing products or services do grow their markets wide and
fast, often enhanced by the network effect. When the market of a product or service
grows wide and fast, we say it becomes viral.

The term viral marketing has become popular since 1997, when an email Web
service called Hotmail quickly grew its user base to pass 10 million. Viral marketing
has since become a marketing strategy in the field of business management. People
have summarized four viral marketing features to characterize why computer viruses
spread so wide and fast. A computer virus is (1) connected to the Internet, and has
(2) zero purchasing price, (3) zero usage cost, and (4) zero propagation cost.

• Connected. This is obvious. Isolated viruses cannot infect.
• Zero purchasing price. No one pays any money to buy a computer virus. The

virus comes “free of charge”. Similarly, the Hotmail service is free of charge.
• Easy to use, zero usage fee. One does not need to learn any manual to “use” a

computer virus. “Using” a virus is also free of charge. Similarly, Hotmail is easy
to subscribe and use.

• Easy to propagate, zero propagation fee. When a product is adopted by a user,
there is an easy way for the product to propagate to other users. For instance, the
Hotmail company devised a viral marketing trick: at the bottom of every e-mail

Fig. 6.15 Per-user revenue (amount in USD) growth trends of Facebook and Tencent

6.4 Network Laws and Responsible Computing 279

sent out by any Hotmail user, there is a line saying “Get your free e-mail at
Hotmail”. This line prompts a non-user to sign up as a Hotmail user.

Example 6.5. Social Networks Facilitate Viral Marketing
Social networks encourage free sharing of information, through various sharing tools
such as blog followers, Twitter tags, WeChat moments, and TikTok likes. Not only
can a network grow quickly, so can a subnetwork. An individual grassroot user can
grow her followers substantially, to become an important influencer in a short time.

For instance, “李子柒 Liziqi”, a rural youth based in Sichuan, China and a
“Nature and Internet Celebrity”, has over 13 million followers on YouTube, as of
December 9th, 2020, with half a million new subscribers in a month. Her videos of
rural beauty have not only entertained people, but also sparked academic studies in
network influencers, digital divide, and urbanization.

6.4.3 Responsible Computing

Responsible computing refers to the ideas and practices to design and use computing
products and services responsibly. Responsible computing issues include, among
other things, (1) cybersecurity issues, (2) privacy awareness, and (3) respecting
professional norms.

6.4.3.1 Cybersecurity Issues

An obvious fact is that some information on the Internet is credible and some is not.
A not so obvious fact is that not all information one receives from a trusted source,
such as a trusted website, is credible. A main reason why we cannot always enjoy
trusted Internet and Web services is that the global Internet is constantly under
attack. According to a 2020 cybercrime report by the cybersecurity firm McAfee,
cybercrime costed companies worldwide over 1 trillion US dollars.

Cybersecurity problems involve hardware, software and people. They come in
many forms, including the following:

• People. Humans make mistakes, including users, developers, and administrators.
Such errors create vulnerabilities which are exploited by attackers. Computing
innovations, including hardware, software and services, are created by people.
Such an innovation, e.g., viral marketing, can have both beneficial and harmful
effects, even for the same person.

• Malware. Various malicious software enables an attacker to damage or gain
unauthorized access to a computer. Malware examples include computer viruses,
Trojan horses and spyware outlined in Box 6.3.

• Hardware exploitation. In 2018, researchers discovered an attack technique
called Meltdown that “does not rely on any software vulnerabilities.” Instead,

280 6 Network Thinking

the attack exploits a feature of processor hardware called out-of-order execution,
to enable an attacker to read privileged information such as passwords.

• DoS attacks. A denial-of-service attack overwhelms a computer by sending it a
lot of messages in a short amount of time, so that the computer has no resource
left to handle normal requests. A distributed denial-of-service (DDoS) attack
utilizes many computer hosts on the Internet to mount the attack.

• Spams. Unwanted emails are often called spams. Some spams are easy to
identify, such as mass advertising emails and phishing emails. Other times, it is
difficult to correctly classify an email as a spam. Suppose a student, who is a
student member of both ACM and IEEE, receives a Call for Participation email
from the Publicity Chair of an ACM or IEEE international conference. Should
this be considered a spam? Professional sources usually offer an option for the
student to indicate “I do not wish to receive such emails anymore”.

• Phishing. A phishing website or phishing emails ask users for sensitive infor-
mation, such as a person’s password or credit card number. Similar to fishing,
phishing offers various types of baits, such as “You are about to receive a
subpoena. Click the attachment for details”, or “Your account has been frozen
and we need your PIN to unfreeze it”.

Box 6.3. Computer Bugs, Malware, Viruses, and Trojan Horses
Computer bugs are the term used to refer to all errors in a computer or a
network of computers, including software bugs and hardware bugs. This term
was attributed to Grace Hopper, a computer pioneer who recorded in 1947 the
first bug in computer history: a moth stuck in a relay in a Mark II Computer at
Harvard University.

Computer bugs are unintentional errors. In contrast, malware is malicious
software that is designed to intentionally damage or control a computer.
Malware includes viruses, Trojan horses, spyware, etc. Trojan horses, like
the one in the Greek story, are computer programs which hide their true
intentions by disguising as ordinary computer files. Spyware collects infor-
mation about an intruded computer and reports the information back to the
attacker.

A computer virus is a self-replicating program able to infect computers,
like biologic viruses infecting people. A computer virus needs to embed in
another program (infecting the program). In contrast, a computer worm is a
standalone self-replicating program that can spread to other computers.

Fred Cohen, an American computer scientist, demonstrated the first com-
puter viruses in 1983 while he was a graduate student at the University of
Southern California. He demonstrated that a virus-infected Unix command
could let the virus gain control of a computer in 5 min.

Various cybersecurity techniques and processes have been utilized to counter
cybercrimes. These counter measures have overheads and are not foolproof.

6.4 Network Laws and Responsible Computing 281

• Physical isolation. For instance, core computing systems in some financial
institutions are not connected to the Internet.

• Firewalls. A computing system connected to the Internet can be protected by a
firewall installed between the system and the Internet, to block or filter out
undesirable messages. When an institution has multiple computers at multiple
sites, they can be interconnected by virtual private networks (VPNs), which are
secure networks built on top of the public Internet. Such an institution system,
protected by firewalls and VPNs, offers an approximation to physical isolation,
without the cost of building a dedicated system.

• Antivirus software. As the name implies, antivirus software is used to detect and
kill computer viruses. In fact, modern antivirus tools can detect and remove
various malware, including viruses, Trojan horses, and spyware.

• Cryptography. Many cybersecurity tools utilize results from cryptography, a
professional field that studies secure message communication in the presence of
adversaries. The basic idea is encryption: turn the original message (plaintext)
into an encrypted message (ciphertext). Decryption is the reverse process of
recovering the plaintext from the ciphertext.

Two types of cryptography are popular. They both use keys for encryption and
decryption. A key is a specially designed piece of information. In symmetric-key
encryption, the two parties of communication share the same secrete key for both
encryption and decryption. The sender side computer uses an encryption algorithm
to encrypts plaintext into ciphertext with the key. Then the ciphertext is sent out. The
receiver side computer uses the same key and a decryption algorithm to decrypt the
ciphertext received, to recover the original plaintext.

For instance, theCaesar ciphermay use a value, e.g., 3, as the key. Its encryption
algorithm shifts each plaintext letter 3 positions down the alphabet, and the decryp-
tion algorithm shifts each ciphertext letter 3 positions up. Thus, given the plaintext
message “HELLO”, the sender encrypts it to create and send out the ciphertext
“KHOOR”. Upon receiving the ciphertext, the receiver decrypts it to recover the
original message “HELLO”, using the same key (3).

In contrast to symmetric-key encryption, the encryption key and the decryption
key are different in public-key encryption. Let us use a simplified example to
demonstrate how public-key encryption works.

Example 6.6. Public-Key Encryption Using the RSA Method
Suppose a sender computer wants to send the receiver computer a message. The
receiver publishes her encryption key for the world to know. That is why it is called
the receiver’s public key. However, the receiver holds her decryption key secrete
(private). Thus, it is called the receiver’s private key. Note that only the receiver’s
keys are involved.

We use below an example from the original paper of the most popular public-key
encryption method, known as the RSA method. Here, RSA refers to Ron Rivest,
Adi Shamir, and Leonard Adleman, who are now professors at the Massachusetts
Institute of Technology, University of Southern California, and the Weizmann

282 6 Network Thinking

Institute of Science, respectively. They invented the RSA method when they were at
MIT, and received Turing Award in 2002.

1. As a preparation, first encode a message into a sequence of numbers. Then it
suffices to show how to securely communicate one number.

2. The sender uses his encryption algorithm F to generate the ciphertext. F takes the
plaintext number M and the receiver’s public key KP as inputs, to generate the
ciphertext number C. In other words, C ¼ F(M,KP).

3. The ciphertext number C is transmitted from the sender to the receiver, over the
Internet. An eavesdropper may intercept C. However, C is enciphered and does
not reveal the plaintext M.

4. The receiver uses her private key KS and the decryption algorithm G to convert
the ciphertext number C into the original plaintext M. That is, M ¼ G(C,KS).

Suppose the plaintext is a 20-character message “ITS ALL GREEK TO ME ”

(note that there are five space characters). The process goes as follows.

• Each character of the plaintext is first turned into a 2-digit number, by the
following converting scheme: space¼00, A¼01, B¼02, . . ., Z¼26. The
20-character plaintext “ITS ALL GREEK TO ME ” will result in a large number
of 40-digit length: 0920190001121200071805051100201500130500, which is
broken into ten 4-digit numbers: 0920 1900 0112 1200 0718 0505 1100 2015
0013 0500. We only need to consider how to securely communicate one number,
e.g., 0920.

• The sender uses the following encryption algorithm: C ¼ Me mod n, where M is
the plaintext number, C is the ciphertext number, and the pair (e, n) is the public
key KP. In other words, KP ¼ (e, n). Now let us make the critical magic
assumption: n ¼ 2773, d ¼ 157, e ¼ 17. Then, when the plaintext number is
M ¼ 0920 ¼ 920, the corresponding ciphertext number is easily computed:

C ¼ Me mod n ¼ 92017 mod 2773 ¼ 948 ¼ 0948:

• The ciphertext number 0948 is transmitted from the sender to the receiver.
• The receiver uses the following decryption algorithm:M¼ Cd mod n, whereM is

the plaintext number, C is the ciphertext number, and the pair (d, n) is the private
key KS. With the ciphertext number 0948, the corresponding plaintext number is
again easily computed:

M ¼ Cd mod n ¼ 948157 mod 2773 ¼ 920 ¼ 0920:

The entire message is a 20-character plaintext “ITS ALL GREEK TO ME ”,
which is converted into ten numbers: 0920 1900 0112 1200 0718 0505 1100 2015
0013 0500. These numbers are encrypted as 0948 2342 1084 1444 2663 2390 0778
0774 0219 1655. This encrypted number sequence is transmitted over the Internet.

6.4 Network Laws and Responsible Computing 283

Note that an eavesdropper knows many things about the communication, because
all this information is public, including:

• The encryption algorithm F, which is C ¼ Me mod n, and the decryption
algorithm G, which is M ¼ Cd mod n.

• The public key KP ¼ (e, n) ¼ (17, 2773).
• The character-to-number converting scheme: space¼00, A¼01, B¼02, . . .,

Z¼26.
• The ciphertext number sequence 0948 2342 1084 1444 2663 2390 0778 0774

0219 1655, which is transmitted over the open Internet.

The eavesdropper can use the character-to-number converting scheme space¼00,
A¼01, B¼02, . . ., Z¼26, to try to recover the plaintext number sequence, which
yields the following gibberish message:

I?W?J?N?Z?W?G?G?BSP?, (symbol ‘?’ is for an undefined number)

instead of the plaintext message:

ITS ALL GREEK TO ME .

Why cannot the eavesdropper decode the ciphertext? He lacks the private key
KP ¼ (d, n) ¼ (157, 2773), which only the receiver holds.

Let us return to the magic assumption: n ¼ 2773, d¼ 157, e¼ 17. How are these
values determined? There are profound mathematical insights underlying this
assumption. We go through the basic idea without involving mathematic details.
The receiver decides the values as follows.

• Randomly choose two large prime numbers p and q, and set n ¼ p � q. For this
example, the receiver chooses n ¼ p � q ¼ 47 � 59 ¼ 2773.

• Compute the Euler number (p � 1) � (q � 1) ¼ 46 � 58 ¼ 2668.
• Randomly choose a large integer d such that GCD(d, 2668) ¼ 1. For this

example, she chooses d ¼ 157 which satisfies GCD(157, 2668) ¼ 1. Now the
receiver has the complete private key information: KS ¼ (d, n) ¼ (157, 2773).

• Find value e satisfying (d� e) mod 2668¼ 1. For this example, e¼ 17. Now the
receiver can publish the public key: KP ¼ (e, n) ¼ (17, 2773).

Note that the eavesdropper knows n¼ p� q¼ 2773. However, he does not know
the two large prime numbers p and q. Consequently, he cannot compute the Euler
number (p � 1) � (q � 1) ¼ 46 � 58 ¼ 2668, or the number d ¼ 157.

One may wonder once we know n, if we can determine the two prime numbers
p and q by a clever algorithm. This is called the prime factorization problem,
which has no known efficient algorithm. RSA relies on this fact.

As of the year 2020, the largest RSA integer factored is RSA-250, which has
250 decimal digits. A French-US team accomplished the prime factorization task
utilizing a network of parallel computers in Europe and the USA. The total comput-
ing resources used are roughly 2700 core-years.

☶

284 6 Network Thinking

A computer network or application can use symmetric-key encryption, public-
key encryption, or both. Let us look at HTTPS, the secure version of HTTP, which
is the most popular protocol for accessing websites today. According to W3Techs, a
Web technology survey service, HTTPS is the default protocol for 68% of the top
10 million websites worldwide.

HTTPS uses an encryption layer called Transport Layer Security (TLS), for
secure communication between a Web browser and a website. TLS, thus HTTPS,
uses both symmetric-key encryption and public-key encryption techniques. For the
long term, HTTPS (and TLS) uses public and private keys between a browser and a
server. For the short term, e.g., for each HTTPS GET session, a onetime symmetric
session key is automatically generated from the public and private keys, and used by
the browser and the server for this session.

When a browser gets a public key from a website, say, ccf.org.cn, how does the
browser know for sure that the website is indeed for China Computer Federation?
HTTPS also uses digital certificate, a bit string issued by a trusted institution called
certificate authority, to authenticate that a website is who it claims to be. When the
website sends the public key to the browser, the website actually sends the digital
certificate which encloses the public key. The browser interacts with the certificate
authority to make sure that the certificate is indeed from the website of China
Computer Federation. Then the browser can use the pubic key, contained in the
certificate, to securely communicate with ccf.org.cn.

6.4.3.2 Privacy Awareness

Security and privacy are related. Some people consider privacy issues a subset of
cybersecurity issues. To differentiate, security is about safeguarding a user’s systems
and data from attacks, while privacy emphasizes keeping a user’s identity and
personally identifiable information (PII) private.

Personal information is any information relates to a natural person’s identity or
personally identifiable information, but does not include anonymized personal
information. Such information is broad, including personal names, ID numbers,
personal photos or videos, website clicks records, voice signals collected by a
smart speaker, financial records, medical conditions, and much more.

Students should be aware that privacy can be violated not only when one’s
obviously sensitive personal data, such as name and credit card number, are explic-
itly exposed. Technical and social means exist to reveal one’s personal data, such as
by utilizing metadata, data mining, and artificial intelligence techniques.

For instance, smart meter technology is used by some communities to care for
senior citizens who have medical conditions and live alone. When the water usage
pattern of a senior citizen’s apartment falls below a certain threshold curve, it is
likely that the senior citizen is incapacitated and a health worker should go to check
up. This is especially beneficial in a pandemic, where more senior citizens are
staying at home alone. However, such technology should not be misused.

6.4 Network Laws and Responsible Computing 285

http://ccf.org.cn
http://ccf.org.cn

Websites collect personal data to provide better services and personalized adver-
tisements. Security cameras are installed in residential areas and city blocks to fight
crimes. However, they also raise privacy concerns. Where and how to draw the line
is still an on-going research area, in the computer science field as well as in the legal
field. IEEE Security and Privacy is a professional magazine exploring security and
privacy issues. On the legal side, the European Union enacted a law framework,
calledGeneral Data Protection Regulation (GDPR), which went into effect in 2018.
The Chinese law-making body, the National People’s Congress of the People’s
Republic of China, published a request for comments of a Personal Information
Protection Act Draft (PIPA), in October 2020.

We list below several items of the laws, in a non-legal language:

• The laws facilitate the protection, as well as legal and fair use, of personal
information (personal data).

• A person has basic rights to his/her personal information, such as:

– Right to permit a third party to collect and use personal data
– Right to timely rectification of personal data
– Right to be forgotten
– Right to port one’s personal data to another website

• These rights are protected by law, even when a piece of personal data is not
owned by the person. A person’s cellphone number is protected, even though the
number belongs to the telecom company, and the person only “rents” it.

• Another person or institution can collect, store, process, and otherwise use a
person’s data in a legal and fair way (PIPA used 合法, 正当, 必要).

6.4.3.3 Respecting Professional Norms

Computing innovations have beneficial and harmful impact on society. The even
more challenging part is that the same computing innovation could be both beneficial
and harmful, sometimes even to the same person. For instance, the personalized
recommendation algorithm used in a video website can recommend relevant videos
to a targeted user, which is often beneficial. On the other hand, the same algorithm
can create a somewhat closed, even biased, information world to the same user,
which may be harmful.

Another challenge relates to collaboration. A modern worker seldom works in
complete isolation. The Human Sorter project of this book specifically asks students
to form groups to do team work. Computing innovations include collaboration tools,
such as emails, social network groups, document-sharing software, video conference
software, and peer-programming tools. Collaboration often increases productivity
and result quality, by synergizing experiences, perspectives, talents, and skills from
the team members. However, collaboration without respecting professional norms
could decrease productivity or even cause harm. Sometimes, the line of right and
wrong is not clear, requiring thoughtful judgement.

286 6 Network Thinking

One way to deal with these dilemmas is to obtain help from professional
communities. As users and developers, students need to be aware of and respect
professional norms, which are often codified in a professional society’s bylaws. For
instance, the Association for Computing Machinery maintains Bylaw 15: ACM Code
of Ethics and Professional Conduct. Its seven principles are shown in Box 6.4.

Box 6.4. Seven Principles of the ACM Code of Conduct
1. Contribute to society and to human well-being, acknowledging that all

people are stakeholders in computing.
2. Avoid harm.
3. Be honest and trustworthy.
4. Be fair and take action not to discriminate.
5. Respect the work required to produce new ideas, inventions, creative

works, and computing artifacts.
6. Respect privacy.
7. Honor confidentiality.

Let us look at Principle 5 in more details. In plain language, this principle says
that the creator and the user of a piece of intellectual work should respect each other.
A new computer innovation, with big or small impact, is built using prior work. A
creator is also a user. Respect comes in many forms, including the following:

• Acknowledgement. The user should credit and cite prior work used.
• Respecting various protections. The user should respect not only laws, but also

regulations, non-disclosure agreement, and code of conduct, which protect the
intellectual property rights of the creator.

• Contribution to public good. The creator should not oppose fair use of his work,
and should contribute to open source or public domain work. The world’s most
popular operating system is Linux, not any proprietary one.

Whether a conduct is professional (i.e., right or wrong in plain language) can
sometimes be difficult to determine. Thus, not only awareness, but also thoughtful
personal judgement, are needed. We use three examples to illustrate the difficulty.

Example 6.7. Free Flow Versus Professionally Sharing of Scientific Data
Should scientific data flow freely, or in some constrained way?

It seems obvious that scientific data should flow freely. For instance, genome
sequence data of COVID-19 viruses are freely available at three databases hosted in
USA, Germany and China: GenBank, GISAID, and 2019nCoVR. Anyone can go to
these websites and download a genome sequence data file. This helps scientists from
all over the world to fight against the COVID-19 pandemic.

However, scientific data may contain sensitive information. Simple-minded
insistence on free flow of scientific data may generate privacy, confidentiality,
safety, and security concerns. A better practice is to share scientific data following
professional norms, which address these concerns.

6.4 Network Laws and Responsible Computing 287

In fact, this point was made explicit by those scientists who create the GISAID
initiative. Look at https://www.gisaid.org/ to find out how they created a model of
free access, while “overcoming disincentive hurdles and restrictions”, by requiring
users to identify themselves and uphold the GISAID Database Access Agreement.

☶

Example 6.8 Full Disclosure Versus Responsible Disclosure
Suppose a worker in a company finds a vulnerability in a product of the company.
The product is used by billions of users. Hackers could exploit the vulnerability to
cause harm to society. What should the worker do? Two of the choices are listed
below:

• Responsible disclosure. Report the vulnerability to the company, without disclo-
sure to the public. This gives the company time to fix the vulnerability, without
hackers knowing and exploiting it.

• Full disclosure. Announce the vulnerability to the public. The public pressure
will force the company to fix the bug before hackers can exploit it.

It is left as an exercise for students to decide which choice better matches the spirit
of the ACM Code of Conduct.

☶

Example 6.9 Morris Worm
In 1988, Robert T. Morris, then a first-year graduate student in computer science at
Cornell University, released a computer worm (later called Morris worm) to the
Internet, while doing his research work. Morris intended to count the number of
computers on the Internet. He did his work by utilizing unauthorized accesses to
spread the worm on those computers.

Due to a bug in the program, the worm caused damages in millions of dollars on
thousands of computers. Morris was sentenced to 3 years of probation plus commu-
nity work and a fine. Later, Robert T. Morris earned a Ph.D. degree from Harvard
University, became a professor at MIT, and was elected to the US National Academy
of Engineering, for his contributions in the computer network.

Given the above facts, determine if releasing the Morris worm is wrong,
according to the ACM Code of Conduct. This is left as an exercise.

☶

6.5 Exercises

1. Which of the following statements is NOT true regarding network thinking?

(a) A node in a network does not have to be a computer.
(b) A node in a network is an abstract or real entity.
(c) Nodes of a network do not have to send messages to one another.

288 6 Network Thinking

https://www.gisaid.org/

(d) There can be no isolated node in a network. Every node has to connect to at
least one other node.

2. Which of the following statements is NOT true?

(a) An accessing point (AP) is not a host, but a networking device, which
converts wired and wireless signals to each other.

(b) A network switch connects multiple devices running the same protocol, to
form a homogeneous network.

(c) A network switch can be used to connect a LAN running Ethernet and
another LAN running WiFi, to form a heterogeneous network.

(d) Several functions can be packed into a product. For instance, a WiFi device
can combine the AP, switch, and router functions into the same the product,
called a WiFi router.

3. What are the sizes of the following networks? Fill out the following table.

Namespace Example Network size (number of nodes)

Personal name Joan Smith Billions

WeChat user ZhongguanVillager

URL www.ict.ac.cn/cs101

Internet site www.ict.ac.cn

Email address zxu@ict.ac.cn

IP address 159.226.97.84

Phone number 189-6666-8888

MAC address 00-1E-C9-43-24-42

4. Determine uniqueness and user-friendliness of each of the following naming
schemes of networks. Fill out the blank cells in the table.

Namespace Example Uniqueness User-friendliness

Personal name Joan Smith Not unique Friendly

WeChat user ZhongguanVillager

URL www.ict.ac.cn/cs101

Internet site www.ict.ac.cn

Email address zxu@ict.ac.cn

IP address 159.226.97.84

Phone number 189-6666-8888

MAC address 00-1E-C9-43-24-42 Unique Not user friendly

5. When accessing a website by entering https://www.ict.ac.cn/cs101 in a browser,
what is the top-level domain (the highest level domain)?

(a) https
(b) www
(c) cn
(d) cs101

6.5 Exercises 289

http://www.ict.ac.cn/cs101
http://www.ict.ac.cn
http://www.ict.ac.cn/cs101
http://www.ict.ac.cn
https://www.ict.ac.cn/cs101

6. Which of the following is NOT a legitimate IP address when using IPv4?

(a) 0.0.0.0
(b) 127.0.0.1
(c) 159.226.97.84
(d) 159.279.97.84

7. Which of the following is a legitimate IP address when using IPv4?

(a) 159.226.97.0
(b) 389.226.97.84
(c) 159.389.97.84
(d) 159.279.389.84
(e) 159.226.97.389

8. What is the role of the Domain Name Service (DNS)?

(a) Converting an Internet domain name into an Internet Protocol address.
(b) Converting an Internet Protocol address into an Internet domain name.
(c) Converting an IP address into a domain name.
(d) Converting a cellphone number into an Internet domain name.

9. IPv6 has a 128-bit address format. In contrast, IPv4 has only a 32-bit address
format. More IP addresses can be provided by IPv6, compared to IPv4. But how
many more?

(a) 32 times as many IP address as IPv4.
(b) 96 times as many IP address as IPv4.
(c) 128 times as many IP address as IPv4.
(d) 232 times as many IP address as IPv4.
(e) 296 times as many IP address as IPv4.
(f) 2128 times as many IP address as IPv4.

10. All scientific literature of the world forms a graph. Let us call this graph the
scientific literature graph (SLG), where a paper (or a book) is a node (vertex),
and a citation is an edge pointing from the citing work to the cited work.
According to network thinking, is the SLG a network?

(a) No. A computer network is used to pass messages. No message is commu-
nicated in the SLG. The citations are just marks.

(b) Yes. The SLG depicts the connectivity of the network of scientific literature.
(c) No. Network thinking must utilize both abstractions of connectivity and

protocol stack.
(d) No. The SLG is not network because scientific literature keeps growing.

11. According to network thinking, is the scientific literature graph (SLG) a static
network, a dynamic network, or an evolving network?

(a) The SLG is not a network.
(b) The SLG is a static network.

290 6 Network Thinking

(c) The SLG is a dynamic network.
(d) The SLG is an evolving network.

12. Albert Einstein published in 1905 a paper on special relativity, with the title On
the Electrodynamics of Moving Bodies when translated into English. This paper
contains no citation. Recall that in the SLG, a citation is an edge pointing from
the citing work to the cited work. Which of the following statements is correct?

(a) In the SLG, Einstein’s paper is a node with no incoming edges.
(b) In the SLG, Einstein’s paper is a node with no outgoing edges.
(c) In the SLG, Einstein’s paper is an isolated node, with neither incoming nor

outgoing edges.
(d) Einstein was wrong not citing prior work.

13. The second-generation search engines generated much better results than the
first-generation search engines. Why?

(a) The second-generation search engines used much better computer systems.
(b) The second-generation search engines collected user data, such as a user’s

click history data, to improve search results.
(c) The second-generation search engines utilized artificial intelligence tech-

niques and were smarter.
(d) These first-generation search engines only utilized nodes of the network of

webpages. The second-generation search engines practiced network think-
ing better by utilizing both nodes and edges.

14. Let us define a search network as follows: the nodes are the search engine and all
search engine users, and there exists an edge between a user and the search
engine. Which of the following statements is NOT correct?

(a) At any moment, the search network is a star network.
(b) At any moment, the search network is a static network.
(c) At any moment, the search network is a dynamic network.
(d) The search network is an evolving network.

15. Which of the following statements is NOT correct?

(a) A bus is equivalent to a fully connected graph with at most one edge being
active at any moment.

(b) Suppose n nodes are connected by a crossbar switch with n fully-duplex
ports. Such a network is equivalent to a fully connected graph of n nodes
with at most n edges being active at any moment.

(c) A network of n nodes connected by a crossbar switch is a dynamic network,
because it does not change its nodes but may change its edges.

(d) A network of n nodes connected by a crossbar switch is an evolving
network, because it may change its nodes and edges.

16. Which of the following statements is correct regarding packet switching?

6.5 Exercises 291

(a) It splits multiple users’ multiple messages into packets, and statistically
transmits the packets in turn.

(b) It splits only one user’s multiple messages into packets, and statistically
transmits the packets in turn.

(c) It packs one user’s multiple messages into one packet and transmits it.
(d) It packs multiple users’ multiple messages into one packet and transmits it.

17. Refer to Example 6.2. Verify that the three downloading tasks finish at
T1¼8.11 s, T2¼0.44 s, and T3¼1.44 s, respectively.

18. Refer to Example 6.2. Observe that for both circuit switching and packet
switching, all three downloading tasks finish at the moment of 8.11 s. In other
words, packet switching does not save time. Then, why bother with inventing
packet switching? Select all reasonable explanations.

(a) With packet switching, the three communication tasks proceed simulta-
neously, without waiting for one another to finish.

(b) With circuit switching, user Wang feels as if his computer is frozen. He
needs to wait for 7.31 s before seeing any bits transmitted.

(c) With circuit switching, user Zhang feels as if her computer is frozen. She
needs to wait for 7.46 s before seeing any bits transmitted.

(d) In many applications using circuit switching, e.g., two people having a
telephone conversation over a circuit, the channel capacity of the circuit is
often not fully utilized. Packet switching can more efficiently utilize the
channel capacity, by having multiple communication tasks sharing the same
circuit.

19. In general, a packet contains four types of information: payload data, addresses,
control information, and error-handling information. What information is
contained in the packet header and the packet body, respectively?

(a) The packet header contains addresses, control information, and error-
handling information; the packet body contains payload data.

(b) The packet header contains addresses and control information; the packet
body contains payload data as well as error-handling information.

(c) The packet header contains addresses; the packet body contains payload
data as well as control information and error-handling information.

(d) The packet header contains control information and error-handling infor-
mation; the packet body contains payload data and addresses.

20. Which of the following statements is NOT correct?

(a) The Web over Internet protocol stack is a technical foundation of data
communication for the World Wide Web.

(b) The HTTP peering interface is used between two peers: a Web browser and
a Web server. This peering interface provides an abstraction, such that the
two peers do not need to worry about the layers of protocols below.

(c) The service interface between HTTP and TCP is used for the TCP layer to
support the HTTP layer.

292 6 Network Thinking

(d) All packets of an HTTP message from a browser to a server travels along the
same physical path.

21. Which of the following statements is NOT correct?

(a) When an HTTP packet is sent from a browser to a Web server, at least one
TCP packet is also sent from the browser computer to the server computer.

(b) When an HTTP packet is sent from a browser to a Web server, at least one IP
packet is also sent from the browser computer to the server computer.

(c) When an HTTP packet is sent from a browser to a Web server, at least one
datalink layer packet is also sent from the browser computer to the server
computer.

(d) When an HTTP packet is sent from a browser to a Web server, a physical
layer binary string of 0’s and 1’s is also sent from the browser computer to
the server computer.

(e) An HTTP packet can be sent from a browser to a Web server, without
sending any TCP, IP, or datalink layer packets.

22. Refer to Fig. 6.10. Suppose only routers (shown as brown boxes) may become
faulty. What is the minimal number of faulty routers required to disable com-
munication between host A to host B?

(a) 1
(b) 2
(c) 3
(d) 4

23. Refer to Fig. 6.10. Suppose only inter-router edges may become faulty. What is
the minimal number of faulty inter-router edges required to disable communi-
cation between host A to host B?

(a) 1
(b) 2
(c) 3
(d) 4

24. A student subscribes to an optical fiber plan from a reputable ISP, which
connects his apartment to the Internet with a 1-Gbps bandwidth connection.
However, he often only experiences a 5-Mbps bandwidth when accessing the
Internet. Why is there this huge disparity? Which of the following is NOT a
reasonable explanation?

(a) The 1-Gbps bandwidth optic connection is only a portion of the full path
from the student’s laptop to the accessed website. The rest of the path could
be much slower.

(b) The student may be sharing a network switch with neighbors.

6.5 Exercises 293

(c) Assume the rest of the Internet is fast enough and there is no sharing. The
1-Gbps bandwidth is the maximal bandwidth, i.e., r1 in Hockney’s formula.
User-experienced bandwidth can be much lower.

(d) The student has a fast laptop computer.

25. Which of the following statements is correct regarding data compression?

(a) Lossless compression often generates larger compressed files than lossy
compression.

(b) Lossy compression can be used to compress a Go program file.
(c) Lossy compression can be used to compress a binary program file, i.e., an

executable program file.
(d) To compress a picture file such as Autumn.bmp, one must use a lossless

compression tool, such as the gzip command.

26. Which of the following statements is true about network effect?

(a) A laptop computer connected to the Internet has more value to the user than
a standalone computer, because it benefits from network effect.

(b) The total value of a network is the linear sum of the values of its nodes.
(c) Reed’s law is wrong because Facebook and Tencent data do not support it.
(d) Viral marketing is absolutely harmful, like biologic viruses hurting people.

27. Cybersecurity protection needs to consider (select one answer)

(a) Software
(b) Software and people
(c) Software and hardware
(d) Software, hardware, and people

28. Which of the following statements is true?

(a) Software bugs are a form of malware.
(b) Malware is a form of software bugs.
(c) Computer viruses are a form of malware.
(d) Spam is a form of software bugs.

29. Which of the following statements is true?

(a) A website has installed firewall, antivirus software and antispam software. It
should be considered a trusted website.

(b) All information from a trusted website is credible.
(c) I access a website through HTTPS, the secure version of HTTP. Thus, the

information I receives from the website is credible.
(d) There is neither perfect cybersecurity, nor absolutely trustworthy website.

30. I receive an email where the Subject part says a famous charity is asking for
donation. Which of the following actions is proper?

294 6 Network Thinking

(a) I should ignore the email since it is a phishing email.
(b) I should donate by clicking the URL in the email and fill out the form with

my credit card information and donation amount.
(c) I should find out more details by clicking the attachment of the email.
(d) I should double check before the donation action.

31. Which of the following statements is true about the Caesar cipher?

(a) It uses public-key encryption.
(b) It uses symmetric-key encryption.
(c) It uses a combination of public-key and symmetric-key encryption.
(d) It uses no encryption.

32. Which of the following statements is true about HTTPS?

(a) It uses public-key encryption.
(b) It uses symmetric-key encryption.
(c) It uses a combination of public-key and symmetric-key encryption.
(d) It uses no encryption.

33. (***) Example 6.6 is mistaken. The eavesdropper CAN decode the ciphertext to
get the plaintext. The eavesdropper knows the following public facts:
(1) n ¼ p � q ¼ 47 � 59 ¼ 2773; (2) e ¼ 17; (3) the relation between the
pair (d, e). He can use the relation (d � e) mod 2668 ¼ 1 to find d, and then
generates the private key (d, e).
What is wrong with this reasoning?

(a) Fact (1) does not hold, because the eavesdropper does not know n ¼ 2773.
(b) Fact (1) does not hold. The eavesdropper only knows n ¼ 2773, but not

47 � 59 ¼ 2773. Consequently, he cannot use (d � e) mod 2668 ¼ 1,
because he cannot compute the Euler
number (p � 1) � (q � 1) ¼ 46 � 58 ¼ 2668.

(c) Fact (2) does not hold, because e ¼ 17 is not public knowledge.

34. (***) A student has found a bug in Example 6.6. The eavesdropper CAN decode
the ciphertext by using a computer program to try all pairs of prime numbers
smaller than n ¼ 2773, to discover that the crucial hidden fact
that n ¼ p � q ¼ 47 � 59 ¼ 2773.

Suggest a way for the lecturer to fix this “bug”?

(a) Inform the class that this Example is from an authority, i.e., from RSA, the
famous Turing Award winners.

(b) Inform the class that no such computer program exists, because prime
factorization is a hard problem.

(c) Inform the class that Example 6.6 uses small numbers to illustrate the
principle of the RSA method. Real applications use much larger n, much
harder to break. For instance, breaking RSA-250 into two prime numbers
needs 1000 years on a laptop computer. HTTPS uses larger numbers.

6.5 Exercises 295

35. (***) Refer to Example 6.6. Write a Go program to compute and verify that
indeed, 92017 mod 2773 ¼ 948 and 948157 mod 2773 ¼ 920.

36. Which of the following is NOT an example of personally identifiable informa-
tion (PII), when discussing privacy protection?

(a) The password of a student’s personal computer
(b) A student’s full name
(c) A student’s university ID number
(d) A student’s full face photo

37. Zhang Lei is a product designer at a company which produced a product that is
used by millions of users. Zhang discovers a bug in the product, which hackers
could exploit to cause harm. What should she do according to the ACM Code of
Conduct?

(a) Do nothing, since she can work with colleagues to fix the bug in a couple of
weeks.

(b) Follow the practice of responsible disclosure.
(c) Follow the practice of full disclosure. That is, announce the bug to the public

without the consent of the company.
(d) Report the bug to governmental regulators.

38. Refer to Example 6.9. Is the act of releasing the Morris worm wrong, according
to the ACM Code of Conduct?

(a) No, because Morris was just doing his research work, intending no harm.
(b) No, because he was an outstanding academic, as demonstrated by his later

achievements.
(c) No, because the damage-causing bug was an accident. Nobody can guaran-

tee that a sophisticated program is bug free.
(d) Yes, because he was convicted and had served his sentence.
(e) Yes, because his action did not do enough to avoid harm, contravening

Principle 2 of the ACM Code of Conduct.

6.6 Bibliographic Notes

The chapter quotation on the original spirit of the World Wide Web is from an
invited talk given by Tim Berners-Lee at the 2019 EmTech China Conference
[1]. An accessible source of introductory Web programming is [2]. Hockney’s
formula on latency and bandwidth is discussed by Roger Hockney in [3]. A recent
report on bandwidth growth trends of optical fibers can be found in [4]. Metcalfe’s
law, Reed’s law, and evidence based on real data can be found in [5, 6]. References
[7, 8] discussed the social network example of a rural video influencer. References
[9, 10] discussed software-based and hardware-based cybersecurity examples. The
RSA method example is based on material from [11, 12]. This book’s description of
professional norms referenced ACM Code of Ethics and Professional Conduct, the

296 6 Network Thinking

entry webpage of which is [13]. Three databases offer open access to genomic data
on COVID-19 viruses [14–16].

References

1. Berners-Lee T (2019) Invited Talk at the EmTech China Conference hosted by MIT Technol-
ogy Review, Beijing

2. https://www.w3schools.com/
3. Hockney RW (1996) The science of computer benchmarking. Society for Industrial and

Applied Mathematics, Philadelphia
4. Hecht J (2016) Great leaps of light. IEEE Spectr 53(2):28–53
5. Metcalfe B (2013) Metcalfe’s law after 40 years of Ethernet. Computer 46(12):26–31
6. Zhang XZ, Liu JJ, Xu ZW (2015) Tencent and Facebook Data validate Metcalfe’s Law. J

Comput Sci Technol 30(2):246–251
7. Jewell JR (2020) YouTube Commentary: “李子柒 Liziqi” — Nature and Internet Celebrity in

the Time of the Coronavirus. The Arts Fuse. https://artsfuse.org/194752/youtube-commentary-
李子柒-liziqi-nature-and-internet-celebrity-in-the-time-of-the-coronavirus/

8. Zhang X (2020) The rural video influencers in China: on the new edge of urbanization. Master
of Arts Thesis, Cornell University

9. Cohen F (1987) Computer viruses: theory and experiments. Comput Secur 6(1):22–35
10. Lipp M, Schwarz M, Gruss D et al (2020) Meltdown: reading kernel memory from user space.

Commun ACM 63(6):46–56
11. Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-

key cryptosystems. Commun ACM 21(2):120–126
12. Zimmermann P (2020) Factorization of RSA-250. https://lists.gforge.inria.fr/pipermail/cado-

nfs-discuss/2020-February/001166.html
13. https://www.acm.org/code-of-ethics
14. https://www.ncbi.nlm.nih.gov/sars-cov-2/
15. https://www.gisaid.org/
16. https://bigd.big.ac.cn/ncov/?lang¼en

References 297

https://www.w3schools.com/
https://artsfuse.org/194752/youtube-commentary-%E6%9D%8E%E5%AD%90%E6%9F%92-liziqi-nature-and-internet-celebrity-in-the-time-of-the-coronavirus/
https://artsfuse.org/194752/youtube-commentary-%E6%9D%8E%E5%AD%90%E6%9F%92-liziqi-nature-and-internet-celebrity-in-the-time-of-the-coronavirus/
https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html
https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html
https://www.acm.org/code-of-ethics
https://www.ncbi.nlm.nih.gov/sars-cov-2/
https://www.gisaid.org/
https://bigd.big.ac.cn/ncov/?lang=en
https://bigd.big.ac.cn/ncov/?lang=en

Chapter 7
Projects

This chapter describes four practice projects, which offer students the opportunity to
design an abstract computer, a real computer, and two computer applications. One of
the applications creates a Web application. The overall design of the four projects is
illustrated in the following Table 7.1. The project order can be adjusted. For instance,
Project 3 can go before Project 2.

The projects also involve responsible computing practices, based on the princi-
ples of the ACM Code of Conduct. These projects emphasize independent work,
collaboration, and acknowledgment. All used intellectual work should be acknowl-
edged. A student can interact with others in doing the project, but the final product
should be his/her own work.

More detailed projects information, based on the practice of the CS101 course at
UCAS, can be found in Supplementary Material at the companion website.

The Supplementary Material also includes a sample learning/teaching platform,
which includes the following resources:

• Software for students to do homework assignments (exercises) and have them
checked and scored.

• Software for students to hand in project reports.
• Instructions and resources for students to download to their personal computers.

Students are instructed to create a Linux environment for the course, including all
necessary code and data files.

• A software tool to do the Turing Adder project.
• A software tool for the Text Hider project. It includes skeleton code, which serves

as a starting point for the students to work on. The code follows good program-
ming practices.

• A website for the Personal Artifact project, which includes a library of dozens of
dynamic webpages from the teaching team and previous students.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
Z. Xu, J. Zhang, Computational Thinking: A Perspective on Computer Science,
https://doi.org/10.1007/978-981-16-3848-0_7

299

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3848-0_7&domain=pdf
https://doi.org/10.1007/978-981-16-3848-0_7#DOI

7.1 Turing Adder: Turing Machine for Serial Additions

The Turing Adder project augments students’ understanding of an abstract com-
puter: the Turing machine. It asks a student to do unary addition of 4-bit numbers,
binary addition of 4-bit numbers, and binary addition of arbitrary-bit numbers. They
are all bit-serial adders of unsigned positive numbers.

• Objective. Use the software tool provided by the teaching/learning platform,
design a Turing machine by entering its state-transition table, for each of the
following three computational tasks. A snapshot of the software tool used at
UCAS is shown in Fig. 7.1.

– Unary addition of two unary numbers, each of which is at most 4-bit long. For
instance, 11 + 111 ¼ 11111. That is, 2 + 3 ¼ 5. Note that the result can be
longer than 4 bits.

Binary addition of two binary numbers, each of which is 4-bit long. For
instance, 1011 + 0111 ¼ 11010, or 11 + 7 ¼ 18. Note that the result can be
longer than 4 bits.

– Binary addition of two binary numbers, each of which is of an arbitrary length
between 4 and 64 bits. The platform tool automatically selects three lengths
and checks the Turing machine for correctness.

• Material and Method. The main material to reference is Sect. 3.2.3 and the
software tool from the teaching/learning platform.

For each of the three tasks, we suggest students to adopt the following design
and development procedure.

– A student first develops the Turing machine on his/her personal computer,
which is connected to the platform.

– The student can see the corresponding state transition diagram of the Turing
machine. Some students prefer such a graphic representation of a Turing
machine, especially when the number of states is small.

Table 7.1 Overall design of the four projects

Project Content Purpose Work mode

Project
1

Turing
Adder

Design an abstract computer
Appreciate Turing machine

Mostly work
alone

Project
2

Text Hider Design a computer application
Appreciate programming

Mostly work
alone

Project
3

Human
Sorter

Design a real computer
Appreciate how algorithm, software and hardware
work together

Team work

Project
4

Personal
Artifact

Appreciate creative expression
Design a network application of dynamic webpage

Mostly work
alone

300 7 Projects

– The student can see execution animation of a Turing machine, as well as debug
the design, either in a step-by-step mode or in a run-to-completion mode.

– After the student is sure about the correctness of the Turing machine, he/she
can submit the work via the platform tool. Submission cannot be reversed.

• Project Report. Students do not need to turn in any project report. The project
completes once all three Turing machines are submitted. The platform tool
automatically checks for duplications.

• Scoring. Each student is scored for correctness of the three Turing machines.

– 50% for the 4-bit unary adder
– 20% for the 4-bit binary adder
– 30% for the arbitrary-bit binary adder

7.2 Text Hider: Program to Hide Text in Picture

The Text Hider project represents a computer application. It hides the content of the
text file hamlet.txt in the picture of the image file Autumn.bmp. This is done by a Go
program hide-0.go, which stores the modified picture in another image file

Fig. 7.1 Snapshot of an example platform tool for the Turing Adder project

7.2 Text Hider: Program to Hide Text in Picture 301

doctoredAutumn.bmp. Students also need to develop a Go program show-0.go, to
recover the content of the text file hamlet.txt from doctoredAutumn.bmp.

• Objective. Develop a Go program to hide the content of a text file in an image
file, as well as a Go program to recover the content of the text file from the
doctored image file. The basic principle of hiding is to replace the least significant
two bits of one byte of the Pixel Array by two bits of a character, as shown in
Example 5.12. The objective has four detailed interpretations:

– The doctored image file must show no visible difference from the original
image file, as demonstrated in Example 5.12.

– The two programs should work for other text and image files, assuming the
BMP image file format. In other words, it should work if we want to hide the
content of the text file aMiddleSummersDream.text in the picture of the image
file Spring.bmp.

– This project emphasizes good programming practice, as illustrated in UKA
Unit 6 in Sect. 2.2. Both hide-0.go and show-0.go should follow such
practices.

– This project emphasizes independent work. Each student should complete this
project on his/her own. To help check for work independence, students must
use the two files, hamlet.txt and Autumn.bmp, which are provided by the
platform. Use by other means, such as borrowing a file from a fellow student
through a USB stick, could cause the project to fail, even without the student
being alerted.

Material and Method. Most material is already provided in Example 5.12.
Recall that the algorithm for hide-0.go is as follows:

Algorithm for hide-0.go

• Input: A text file hamlet.txt and an image file Autumn.bmp.
• Output: A doctored image file doctoredAutumn.bmp
• Steps:

1. Read Autumn.bmp into variable p // p for picture
2. Read hamlet.txt into variable t // t for text
3. Hide the length of hamlet.txt in the first 32 bytes of Pixel Array
4. Hide hamlet.txt in variable p in the remaining bytes of Pixel Array
5. Write p to file doctoredAutumn.bmp

Students need to pay attention to the following items:

– Design and develop the hide-0.go program to follow good programming prac-
tices. The code in the textbook is incomplete and does not pay much attention to
good programming practices.

– Design an algorithm for show-0.go.
– Develop the show-0.go program and follow good programming practices.
– Verify that the two programs indeed hide and recover a text file in an image file,

by executing them on the baseline files hamlet.txt and Autumn.bmp.

302 7 Projects

https://doi.org/10.1007/978-981-16-3848-0_5#FPar12
https://doi.org/10.1007/978-981-16-3848-0_5#FPar12
https://doi.org/10.1007/978-981-16-3848-0_5#FPar12

• Project Report. Every student needs to turn in a project report, including:

– Description of the student’s own design on how to hide and show
– Source code of hide-0.go and show-0.go
– Evaluation of programs’ executions
– Reflection and discussion, including any unusual happenings
– Acknowledgements, if any

• Scoring. Each student is scored for programming (including good programming
practices) and independent work.

– 85% for the student’s design and code, if achieving the project objective
– 15% for communications clarity of the project report

7.3 Human Sorter: Team Computer for Quicksort

The Human Sorter project invites students to design a real computer: a computer
made of a team of students to do quicksort. By designing and testing this team
computer, students learn team work. Each student also reports to the team how
computer hardware, instructions, and program execution work as a whole.

• Objective. Design a team computer of students to execute a quicksort program, to
sort the students in the team from order by name to order by height (Fig. 7.2).

Each student needs to produce a design, including:

– The team computer organization
– The instruction set of the team computer
– The quicksort program made of a sequence of such instructions
– The evaluation record of program executions

The evaluation must show that the design satisfies three correctness
properties:

– Result correctness: the students are indeed ordered by height.
– Algorithmic correctness: the execution implements the quicksort algorithm.
– Systems correctness: the team computer executes the program sequentially,

i.e., step-by-step, one instruction after another.

• Material and Method. A CS101 course usually enrolls hundreds of students.
This large class is divided into small teams. Each team needs a team leader and
should consist of no more than 30 students. Remember that the quicksort algo-
rithm takes at least O(n log n) steps.

– Data, memory, processor are all made of humans (students). The team com-
puter is a human computer, not an electronic computer.

– The team computer hardware organization must consist of memory and
processor. No I/O devices are necessary.

7.3 Human Sorter: Team Computer for Quicksort 303

– For tips on computer hardware design, refer to Sects. 2.3 and 5.3.3. But, forget
not that this is a human computer. Each student and each team can use their
imagination in the design. It does not have to be a computer following the von
Neumann architecture. For instance, the instructions of the quicksort code do
not have to be stored in the memory of the team computer.

– For tips on instruction set design and the quicksort program implementation,
refer to Sects. 2.3, 4.3.3 and 5.3.3.

– It is best that program executions are conducted on a sufficiently large open
space, such as on a big lawn that can accommodate hundreds of students.

– Each team must keep meticulous records of execution, down to the execution
of every instruction step. For each execution of the quicksort program, the
initial configuration, the final configuration and the number of steps are
reported. That is one reason why the team computer in Fig. 7.2 has a monitor,
who keeps the record of every execution step. The stepper serves as the system
clock, to count the steps and to make sure that the rest of the system follows the
step-by-step rule. Humans tend to violate this rule.

• Project Report. Every student needs to report his/her design to the team. Each
team comes up with its design by selecting and combining designs from the team
members, through a process of rough consensus and running code (the IETF
mantra). At the end of the project after the team’s execution runs, each student
hands in a project report, which contains the following contents:

– The student’s own design, which could be a revised version built on the team’s
design

– Evaluation of the team’s design, with sufficient evidence
– Reflection and discussion, including any unusual or funny happenings
– Acknowledgements

Stepper Controller Monitor

Data

Teaching
team
is
nearby
to
admire
and
assist

Fig. 7.2 A team computer sorts a team of students: from order by name to order by height. (Photos
are blurred for privacy. Photos credits: Haoming Qiu)

304 7 Projects

Note that there is no project report handed in by a team. However, each team
should present its design to the entire class of hundreds of students, by class
presentation, posters, or webpages.

In the UCAS CS101 course, this project normally takes 3–4 sessions:

– Session 1. Individual students go through their designs
– Session 2. Teams fix their designs
– Session 3. Teams run their quicksort programs on their team computers
– Session 4. Teams report their projects to the entire class

• Scoring. Each student is scored for design, team work, and communication.

– 80% for the student’s design, if it achieves the project objective
– 10% for the team leader’s report
– 10% for communications clarity of the project report

7.4 Personal Artifact: Web Page of Creative Expression

This Personal Artifact project encourage students to demonstrate their creative
expression by designing a dynamic webpage. Students are also encouraged to
learn any additional knowledge needed by themselves.

• Objective. Design a dynamic webpage of creative expression. Successful com-
pletion of this personal artifact needs students to demonstrate their self-learning
capability, as the textbook or the lecturers do not cover much Web programming
material, except that in Sect. 6.3.2.

Each student needs to produce and show to the class a webpage:

– A dynamic webpage including HTML, CSS, and JavaScript code
– A webpage showing creative expression

• Material and Method. The students each use the material in Sect. 6.3.2 as a
starting point, create a dynamic webpage, and upload the files and the project
report to the class website. In the process, students may need to reference the
following sources of resources.

– The Internet. For instance, additional Web programming knowledge can be
found at https://www.w3schools.com/.

– The library of Personal Artifacts examples in the Supplementary Material.
Previous students have created a dozen genres. The top three are scientific
artifacts, games, and artistic communications.

Three points should be emphasized in producing the artifact.

– Most of the artifact should be made by the student.
– Used material from other sources should be properly acknowledged.

7.4 Personal Artifact: Web Page of Creative Expression 305

https://www.w3schools.com/

– Make an effort to control the program size of your webpage. 100–200 lines of
HTML/CSS/JavaScript code can go a long way. Avoid copying existing code
into your product.

Some students created webpages for “My Beautiful Homeland”. The idea is
wonderful. Some students created a webpage with links to beautiful photos enticing
people to visit their homeland as tourists. However, such projects could get a low
score for two problems: (1) the webpage is not dynamic, and (2) most photos are
creations of other people.

• Project Report. The project report has a free form, including:

– Articulation of the artifact, including reflection and discussion
– Source code of the webpage program
– Acknowledgements

• Scoring. Each student is scored for design and communication.

– 90% for the student’s design, if it achieves the project objective
– 10% for communications clarity of the project report

306 7 Projects

Chapter 8
Appendices

8.1 Multiples and Fractions

Bse 10
Base
2 Symbol Prefix Example

10E24 2E80 Y Yotta

10E21 2E70 Z Zetta ZB, zettabytes, the world’s data volume

10E18 2E60 E Exa EFLOPS, Exa floating-point operations per second, speed
of supercomputers

10E15 2E50 P Peta PB, petabytes, a server’s storage capacity

10E12 2E40 T Tera TB, terabytes, a disk’s storage capacity

10E9 2E30 G Giga Gbps, giga bits per second, bandwidth of a local area
network

10E6 2E20 M Mega MW, Mega Watt, power consumption of a supercomputer

10E3 2E10 K Kilo Kg, Kilogram, weight of a laptop computer

10E2 H Hecta

10E1 da deca

10E-1 d deci 100 ms, 100 milliseconds, good interaction time when
using a computer

10E-2 c centi

10E-3 m milli mm, millimeter, size of a semiconductor die

10E-6 μ micro μs, microsecond, communication latency between two
nodes of a supercomputer

10E-9 n nano nm, nanometer, feature size of a semiconductor technology

10E-12 p pico pJ, picojoule, energy consumption of an arithmetic opera-
tion in a computer

10E-15 f femto fs, femtosecond, laser wavelength

10E-18 a atto

10E-21 z zepto Landauer’s principle: Erasing one bit needs zeptoJoule
energy

Note that the same symbol may imply different values using base 10 or base 2.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
Z. Xu, J. Zhang, Computational Thinking: A Perspective on Computer Science,
https://doi.org/10.1007/978-981-16-3848-0_8

307

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3848-0_8&domain=pdf
https://doi.org/10.1007/978-981-16-3848-0_8#DOI

T ¼ 1.00 � 2E40 ¼ 1,099,511,627,776 �1.10 � 10E12 6¼1.00 � 10E12

G ¼ 1.00 � 2E30 ¼ 1,073,741,824 �1.07 � 10E9 6¼1.00 � 10E9

M ¼ 1.00 � 2E20 ¼ 1,048,576 �1.05 � 10E6 6¼1.00 � 10E6

K ¼ 1.00 � 2E10 ¼ 1,024 �1.02 � 10E3 6¼1.00 � 10E3

This difference is the reason why some users thought that a vendor may give them
fewer resources in a computer product. For instance, a 1-TB hard disk may actually
have only a storage capacity of 10E12¼1,000,000,000,000 bytes, not
2E40¼1,099,511,627,776 bytes, a shortage of about 100GB.

8.2 Programming Basics

Programming in the Go programming language (Golang) is explained in preceding
chapters. For ease of reference, we summarize the programming constructs in four
tables: shell commands, packages, statements, and data types (Tables 8.1, 8.2, 8.3,
and 8.4).

In many Go programs of this book, e.g., fib.dp.bu.go in Example 34 of
Section 4.3.1, input data are hardwired into the code, to simplify the code. This is
bad programming practice. The fib.dp.bu.go code only works for F(5). It is better to
change

Table 8.1 Commands in a Linux shell used in this book

Command Purpose Example

cat Print file to standard output >cat hello.go
print hello.go to screen

cd Change directory >cd ..
change to the parent directory

display Display a picture >display ucas.bmp
display ucas.bmp on screen

./hello Execute binary code hello in current directory

go build Compile Go source file into executable
file

>go build hello.go
compile hello.go into executable file
hello

go run Compile and execute
Go program

>go run hello.go
compile and execute hello.go

ls List files in current directory >ls .
list files of current directory

Tab key Automatically complete a command

" Execute the previous command

Ctr-C Exit the current command

Ctr-S Save the file in editing

308 8 Appendices

func main() {
fmt.Println("F(5)=", fibonacci(5))

}

in fib.dp.bu.go to the following code, which enables user to enter a number.

func main() {
var n int = 0
fmt.Printf("Please enter a natural number between 0 and 92: ")
_,err := fmt.Scanf("%d", &n) // n = user-entered integer
if err != nil {
fmt.Println("Input Error: Not a number")
return

}else if n < 0 {
fmt.Println("Input Error: Please enter a non-negative integer.")
return

}else if n >92 {
fmt.Println("Input Error: The number is too large. The program

overflows.")
return

}
fmt.Printf("F(%d) = %d\n", n, fibonacci(n))

}

8.3 Pointers to Supplementary Material

The companion website cs101.ucas.edu.cn provides supplementary material for
(1) lecture and projects slides, (2) the source code of programs, and (3) answers to
even-numbered homework exercises. In addition, it contains pointers to sample
programs and tools which help provide a teaching and learning platform. Among
other code, the following are included.

Table 8.2 Golang packages used in this book

Package Example

fmt For input and output functions, e.g.,
fmt.Println(“Hello”) //print “Hello” to display
fmt.Printf(“One¼%d”,1) //print “One¼1” to display
fmt.Scanf(“%d”,&A) //enable user to enter integer to variable A

io/ioutil For reading/writing files, e.g.,
p, _ :¼ ioutil.ReadFile("./ucas.bmp") //read data in ucas.bmp to variable p
ioutil.WriteFile("./mucas.bmp", p, 0666) //write p to mucas.bmp

math For mathematical functions, e.g.,
math.Pow(2,3) //returns 2^3¼8

os For interaction with operating system, e.g.,
V :¼ os.Args[0] //os.Args is an array of command parameters

8.3 Pointers to Supplementary Material 309

• Go programs:

binary.search.go
fib-10.go
fib-5.go
fib-50.go
fib.binet-50.go
fib.dp-5.go
fib.dp-50.go
fib.dp.big.go
fib.dp.go

Table 8.3 Golang statements used in this book

Statement Example

Assignment v :¼ 1 // assign 1 to v
a,b :¼ true,false // assign true to a and false to b

Break Terminate a loop, e.g.,
for i:¼0;i<5;i++{
if(i>¼3) break
fmt.Printf(“%d ”,i)
}
The code above will print 0 1 2, because the loop is terminated by break when
i¼¼3

Continue Go to beginning of the next loop iteration, e.g.,
for i:¼0;i<5;i++{
if(i<3) continue
fmt.Println(“%d ”,i)
}
The code above will print 3 4, because when i<3, fmt.Println() is skipped

Declaration v :¼ 3 // declare a variable v and assign 3 to it
var v int ¼ 3
const c ¼ 3 // declare a constant c and assign 3 to it
const c int ¼ 3

For loop // Compute sum of an integer array
sum :¼ 0
var arr [5]int ¼ [5]int{0,1,2,3,4}
for i:¼0; i<len(arr); i++{ // i:¼0; is init statement, i<len(arr); is
sum +¼ arr[i] // condition and i++ is post statement
}

Function
definition

// Define an addition function
func Add(a int, b int) int { // Add is the function name
return a+b // a,b are parameters of the function
}

Function call c :¼ Add(1,2) // call Add function to obtain c ¼ 3

If statement if a<b {
fmt.Println(“Smaller”) // if a<b, this statement will be executed
}else{
fmt.Println(“Not smaller”) // if a>¼b, this statement will be executed
}

Return Specify the return value of a function, e.g., “return a+b” in Add

310 8 Appendices

fib.dp.bu.go
fib.go
fib.matrix.go
fib.Uint.go
hash.search.go
hello-1.go
hello.go
hide-0.go
linear.search.go
name_to_number-0.go
name_to_number-1.go
name_to_number.go
null.go
parity.go
pi.go
pointer.go
replace.go
symbols.go
testPoint123.go
WebServer.go

• Web programs:

myFirstWebPage.html
staticChildrensDay.html
ChildrensDay.html

Table 8.4 Go data types used in this book

Data
type Example

array var a [10]int // define an array consisting of 10 integers
var primes [3]int ¼ [3]int {2,3,5} // define an array consisting of 2,3,5
var p0 int ¼ primes[0] // primes[0] is the zero-th element of primes

bool var a bool ¼ true // define a bool variable named “a”, whose value is true
b,c :¼ true,false // define 2 bool variables whose values are true,false

byte var X byte ¼ ‘a’ // define byte variable X, assign ASCII encoding of ‘a’ to it

int var y int ¼ 1 // define a signed integer variable whose value is 1

slice var prime_array [3]int ¼ [6]int {2,3,5} // prime_array is an array
var s []int ¼ primes[0:2] // s is a slice representing the first 2 elements of primes
var u []int ¼ make([]int,3) // u is a slice representing a nameless array consisting of
3 integers

string var str1 string ¼ “directly declaration” // define a string
var n int ¼ len(str1) // len() returns the number of characters in str1

uint var i uint ¼ 1 // define an unsigned integer variable whose value is 1

8.3 Pointers to Supplementary Material 311

Index

A
ABC features, 9
Absolute file name, 206
Abstract computer, vii, xi
Abstraction, xiii, 191–213
Access point (AP), 255
Accumulator, 64
Acu-Exams, 14
Adapt, 132
Address, 64, 185
Addressing mode, 201–206
Algorithm, 1, 132
Algorithmic thinking, 15, 131–182
Amdahl’s law, 234–241
American Standard Code for Information

Interchange (ASCII), 47
Analog values, 41
Antivirus software, 282
Application layer, 266
Application software, 227
Arithmetic logic unit (ALU), 61
Array, 52, 53, 198–200
Assembly language, 64
Assignment, 54
Asymptotic notation, 136
Automata, 104–115
Automatic execution, xiii, 9
Automaton, 106
Average case, 162
Average time complexity, 167
Axiomatic systems, 103
Axioms, 103

B
Babbage’s problem, 25
Bandwidth, 275
Barber paradox, 120
Base, 64
Base register, 64
Basic verb, 55–56
Batch, 28
Bees metaphor, xiii
Bell’s law, 27
Benchmarks, 187
Beneficial and harmful impact, 286
Best case, 162
Biased exponent, 196
Big endian, 185
Binary, 43–46, 61
Binary search, 165
Binet’s formula, 10, 11
BIOS, 228
Bit, 1, 10
Bit accuracy, 10
Bitmap (BMP), 207
Bit-shift, 96
Body, 265
Boolean algebra axioms, 85
Boolean expressions, 85
Boolean function, 85
Boolean logic, 82–104
Bottleneck, 235
Broadcasting, 262
Bubble sort algorithm, 134–136
Bugs, 6

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
Z. Xu, J. Zhang, Computational Thinking: A Perspective on Computer Science,
https://doi.org/10.1007/978-981-16-3848-0

313

https://doi.org/10.1007/978-981-16-3848-0#DOI

Bus, 261
Bush’s problem, 25, 27
Business computing., 29
Byte, 47, 53, 199
Byte-addressable, 42

C
Cache, 63, 236
Caesar cipher, 282
Camel notation, xviii
Caryl Rusbult’s investment model, 12
Central processing unit (CPU), 61
Certificate authority, 285
Character, 198–200
Church-Turing Hypothesis, 116
Church-Turing Thesis, 116
Circuit switching, 263
Client, 26, 255
Clock cycle, 220, 230
Clock frequency, 220
Cloud computing, 28
Code, 2, 5
COG properties, 191
Collaboration, 286
Combinational circuits, 214–217
Command-line prompt., 49
Comments, 4
Compilation, 5
Compile-time errors, 6
Completeness, 120
Complexity, xi, xiii
Complexity class NP, 175
Complexity class P, 175
Computability, 115
Computable problem, 116
Computational lens, 30
Computational process, 1
Computational thinking, 8–19, 30–31
Computer application, vii, xi
Computer science, 1–38
Computer simulation, 24
Computer system, 5
Computer virus, 279
Conclusion, 103
Conditional, 212
Conjunction, 85
Conjunctive normal form, 87
Connectivity, 253, 256–262
Consistency, 120
Constant, 52
Constrained, 192
Constructive abstraction, 12

Constructs, 58
Consumer computing, 29
Context, 213
Contrapositive, 94
Control abstractions, 183, 192, 212–213
Control dependency, 240
Converse, 94
Coping with complexity, 184
Correctness, xiii, 81
Creative expression, xi
Crossbar, 261
Cryptography, 282
Current directory, 206
Curse of exponentiation, 24
Cyberspace, 2

D
Data, 2, 213

abstractions, 183, 192–212
cache, 236
compression, 276
dependency, 240
link layer, 265
representation, 185, 186
types, 51, 192

Decidability, 120
Decimal, 43–46
Decryption, 282
Define, 131
Denial-of-service (DOS), 281
Dependencies, 240
Dereference, 201
Design, 131
D flip-flop, 220
Dictionary, 163
Digital certificate, 285
Digital economy, 20
Digital infinity, xiii
Digital symbol, 1
Digital symbol manipulation, 41–80
Digits, 193
Digit set, 194
Directory, 206
Discretization, 41
Disjunction, 85
Disjunctive normal form, 86
Distributed denial-of-service (DDoS), 281
Divide-and-conquer algorithms, 138–151
Documentation, 57
Domain, 99
Domain name, 259
Domain name system (DNS), 257

314 Index

Dot notation, xviii
Dynamic networks, 261
Dynamic programming, 59, 151–154
Dynamic webpage, 269

E
Edges, 256
Effectiveness, xiii
Efficiency, 239
Eight understandings within, 14–17
Elementary web programming, 269
Embedded, 27
Encoding, 2
Encryption, 282
Enterprise computing, 29
Entscheidungsproblem, 117
Evolutionary networks, 261
Exceptions, 234
Exclusive-or, 84
Explicit and implicit input/output, 115
Exponent, 195
Expression, 54

F
Fibonacci computer, 63, 225
Fibonacci numbers, 9
File abstraction, 206–212
Files, 2, 206
File system, 206
Finite automaton, 106
Finite states, 114
Firewall, 282
Firmware, 228
Flip-flops, 217
Floating-point number, 195, 197
FLOPS, 187
For loop, 53, 212
Formatting verbs, 51
Free flow, 287
Full adder, 90, 216
Full disclosure, 288
Full-duplex, 262
Function, 5, 58, 59, 212, 213

G
Gates, 214
Gateway, 256
General data protection regulation (GDPR), 286
Generality, 81
Generalizable, 192

Gödel’s incompleteness theorems, 120–124
Gödel’s first incompleteness theorem, 120
Gödel’s second incompleteness theorem, 121
Gold metaphor, 22
Goodstein theorem, 123
Graph, 256
Graph coloring problem, 177
Graphic user interface (GUI), 28
Greatest common divisor, 134
Greedy strategy, 154–159

H
Halting problem, 117
Hamiltonian path problem, 177, 178
Harvard architecture, 233
Hash function, 167
Hash index, 167
Hashing, 167
Hash search, 167–173
Hash table, 167
Header, 265
Heap, 213
Hexadecimal, 45
High-level formatting verb, 55–56
High-level language program, 5
Hockney’s formula, 275
Home directory, 206
Homepage, 260
Host, 255
Hub, 255
Hypertext, 27
Hypertext transport protocol (HTTP), 260
Hypertext transport protocol secure (HTTPS),

260, 285

I
I/O devices, 61, 63, 186
Implication, 83
Incomputable problems, 117–120
Index, 53, 64, 193
Index register, 64
Indirect addressing, 201
Inference rules, 103
Information and communication technology

(ICT), 20
Information hiding, 183, 215
Information society, 21
Information technology (IT), 20
Infrastructure software, 227
Input, 131, 132
Insertion sort algorithm, 139–140

Index 315

Instance, 257
Instruction register (IR), 235
Instructions, 60

cache, 236
cycle, 230
driven, 62
pipeline, 224
set, 64, 224

Integer, 198–200
Integer multiplication, 146–148
Interactive, 28
Internet, 253, 257
Internet service provider (ISP), 255
Interpreter, 6
Inverse, 94
IP address, 257
IPv4 addresses, 258
IPv6 addresses, 258
IT industry, 20
IT professionals, 21

K
Keck’s law, 23
Keys, 282
Kleene algebra axioms, 91
Kleene expressions, 91
Kleene function, 93
Kleene logic, 91–93
Knuth’s characterization of algorithm, 132–134
Knuth’s Test, xvi, 18

L
Latency, 275
Length, 53
Liar paradox, 119
Linear search, 164
Little endian, 185, 186
Local area network (LAN), 254
Locality, 236
Logic, 30
Logic thinking, 15, 81–129
Loop, 52
Loopback domain name, 260
Loopback IP address, 260
Loop body, 54
Lossless compression, 276
Lossy compression, 276
Low-level language program, 6

M
Machine code, 5
Magic numbers, 56

Main memory, 62
Maintain the code, 56
Make, 199
Manipulation, 1
Mantissa, 195
Matrix multiplication, 148–150
Measure, 131
Mechanical theorem proving, 104–105
Memory, 61
Memory address register (MAR), 235
Memory cell, 218–219
Memory data register (MDR), 235
Merge sort algorithm, 140–143
Messages, 263
Message storage problem, 184
Metadata, 207
Metcalfe’s law, 277–279
Metropolitan area network (MAN), 254
Middleware, 227
Mobile internet, 28
Modeling, 2
Modularity, xiii
Modularization, 214–228
Modules, 183, 190
Moore’s law, 23
Morris worm, 288
Motherboard, 62
Multicore, 63
Multimedia, 28
Multiplexer, 217

N
Namespace, 256, 257
Naming, 256
Negation, 94
Negation properties, 100
Network, 28, 254

effect, 277
laws, 274–288
layer, 266
thinking, 254–296
topology, 261–262

Networking devices, 255
Nodes, 254
Nordhaus’s law, 22
Normal forms, 86–87
Normalized significant, 196
No stop in the middle, 114
NP-complete, 178

O
Object, 272
Objective, 192

316 Index

Offset, 64
Operations, 1
Order, 99
Output, 131, 132
Overflow, 17

P
Packets, 263
Packet switching, 263
Palindromes, 106
Paradoxes, 117–120
Parallel computer, 240
Parallel computing, 240
Parity, 96
Peak speed, 238
Peano Arithmetic, 121
Peering interface, 267
Persistence, 206
Personal, 28
Personal Information Protection Act (PIPA),

286
Phishing emails, 281
Phishing website, 281
Physical layer, 265
Pixel, 207
P-M-I/O, 61
Pointer, 201–206
Polynomial Church-Turing Thesis, 116
Portable, 28
Positional notation, 193
Positional number systems, 193
Postel’s robustness principle, 231–232
Practical, 183
Precedence, 212
Predicate, 98
Predicate refinement, 101, 102
Predicative logic, 98–104
Premise, 83
Prime factorization problem, 284
Princeton architecture, 233
Principle of Harmony, 30
Privacy awareness, 285
Private key, 282
Problem, 2
Problem, Encoding, Computation Process, and

Computer System (PEPS), 2
Problem solving, 1–8
Process, 188
Processor, 61
Professionally sharing of scientific data, 287
Program, 1

counter, 64

cycle, 230
Program status register, 64
Programming, 3
Proposition, 83
Propositional logic, 83–97
Protocol, 263
Protocol stack, 253, 263
Public key, 282
Public-key encryption, 282
Pumping Lemma, 128
P versus NP problem, 177

Q
Quantifiers, 99
Quicksort, 160
Quotation marks, xviii

R
Randomization strategy, 160–163
Reads, 206
Real computer, vii, xi
Reducible, 116
Redundancy, 268
Reed’s law, 277–279
Relative file names, 207
Remark, 257
Representation, 42
Responsible computing, 274–288
Responsible disclosure, 288
RFCs, 257
Right-moving Turing machine, 127
Ripple-carry adder, 216
Root directory, 206
Rounding error, 14
Routers, 255
RSA method, 282
Runtime errors, 6
Russell’s paradox, 120

S
Scientific computing, 29
Seamless execution, 183, 190
Seamless transition, xiii, 228
Search, 163
Search algorithms, 163–173
Search engine, 262
Selection, 212
Sequencing, 212
Sequential circuits, 217, 220–221
Sequential computers, 240

Index 317

Serial adder, 221–224
Serial execution, 62
Server, 255
Service interface, 267
Shell, 7, 50
Significant, 195
Simple signed integer, 46
Simulation, 24
Single factor optimization, 143–146
Slash notation, xviii
Slice, 58, 59, 198–200
Software stack, 227
Sorting problem, 134–136
Spams, 281
Spatial locality, 188
Specific algorithm, 131
Speedup, 234
Spyware, 282
Stable matching problem, 155
Stack, 188, 213
Standard, 257

error, 50
input, 50
output, 50

State circuit, 217
Statement, 5
State transition, 63
State-transition diagram, 106
State-transition table, 106
Static networks, 261
Steps, 131, 132
Stored program, 62
Stored program architecture, 60
Stores, 206
Strassen’s algorithm, 149, 150
String, 52, 53
Subtractor, 221–224
Supercomputers, 187
Sustained speed, 238
Switch, 255
Symbol-manipulation system, 60–74
Symmetric-key encryption, 282
Synchronous sequential circuits, 224
System, 3

heterogeneity, 190
organization, 190
scale, 190
software, 227
thinking, 15, 183–251
variation, 190

Systematic, 184

T
TCP/IP protocol stack, 265
Temporal locality, 187
Text, 213
Thorough, 184
Three features without, 9–13
Time complexity, 138
Topology, 261
Transport layer, 266
Transport layer security (TLS), 285
Trojan horses, 282
Truth table, 84
Turing computable, 116
Turing machines, 104–115
Turing’s problem, 28
Turing Test, 29
Two’s complement, 46
Type cast, 54

U
Uint8, 53, 199
UKA units, 18
Undesirable, 282
Unicode, 192
Uniform resource locator (URL), 260
Universality, xiii
Unsigned integer, 46
Usage mode, 28
User experience, 275
UTF-8, 198

V
Variable, 52
Vertex, 256
Viral marketing, 279
Virtual private networks (VPNs), 282
Virtual things, 24
Virtual worlds, 24
von Neumann architecture, 60
von Neumann bottleneck, 236
von Neumann computer, 63–74
von Neumann’s exhaustiveness principle,

232–234

W
Web address, 260
Web over Internet stack, 263–269
Web resource, 260

318 Index

Wide area network (WAN), 254
WiFi router, 289
Wonder of cyberspace, 24
Wonder of exponentiation, 22
Wonder of simulation, 24
Word, 42
Word length, 17, 42

World Wide Web, 260
Worst case, 162

Y
Yang’s cycle principle, 229–230

Index 319

	Preface
	Introduction
	Problem-Solving Examples
	Intended Audience
	Structure of Contents
	How to Use This Book?
	Notations
	Supplementary Material
	Acknowledgments
	Bibliographic Notes
	References

	Contents
	Chapter 1: Overview of Computer Science
	1.1 Computational Processes in Problem Solving
	1.2 Characteristics of Computational Thinking
	1.2.1 The Three Features Without
	1.2.2 The Eight Understandings Within
	1.2.3 A Research Viewpoint of Computer Science

	1.3 Relation of Computer Science to Society
	1.3.1 Computer Science Supports Information Society
	1.3.2 Computer Science Shows Three Wonders
	1.3.3 Computer Science Has Three Persuasions
	1.3.4 Computational Thinking Is a Symphony

	1.4 Exercises
	1.5 Bibliographic Notes
	References

	Chapter 2: Processes of Digital Symbol Manipulation
	2.1 Data as Symbols
	2.1.1 Conversions Between Binary and Decimal Number Representations
	2.1.2 Representing Integers in Two´s Complement Representation
	2.1.3 Representing English Characters: The ASCII Characters

	2.2 Programs as Symbols
	2.2.1 A Number of Simple Programs
	2.2.2 Programs Relating Character Strings to Integers
	2.2.3 Good Programming Practices
	2.2.4 Using Dynamic Programing to Compute Fibonacci Number F(50)

	2.3 Computer as a Symbol-Manipulation System
	2.3.1 A Glimpse Inside a Computer
	2.3.2 A Step-By-Step Process on a von Neumann Computer

	2.4 Exercises
	2.5 Bibliographic Notes
	References

	Chapter 3: Logic Thinking
	3.1 Boolean Logic
	3.1.1 Propositional Logic
	3.1.1.1 Propositions and Logic Connectives
	3.1.1.2 Truth Table
	3.1.1.3 Properties of Logic Connectives
	3.1.1.4 Boolean Expression and Boolean Function
	3.1.1.5 Normal Forms
	3.1.1.6 The Number of Boolean functions
	3.1.1.7 (***) Kleene Logic
	3.1.1.8 Using Propositional Logic to Solve Problems

	3.1.2 Predicative Logic
	3.1.2.1 Predicate and Quantifier
	3.1.2.2 More Examples of Writing Predicative Logic Expressions
	3.1.2.3 Inference Rules and Axiomatic Systems in Boolean Logic

	3.2 Automata and Turing Machines
	3.2.1 Mechanical Theorem Proving
	3.2.2 Automata
	3.2.3 Computation on Turing Machine
	3.2.3.1 Notable Details of Turing Machine

	3.3 Power and Limitation of Computing
	3.3.1 Church-Turing Hypothesis
	3.3.2 (***) Incomputable Problems and Paradoxes
	3.3.3 (***) Gödel´s Incompleteness Theorems

	3.4 Exercises
	3.5 Bibliographic Notes
	References

	Chapter 4: Algorithmic Thinking
	4.1 What Are Algorithms
	4.1.1 Knuth´s Characterization of Algorithm
	4.1.2 The Sorting Problem and the Bubble Sort Algorithm
	4.1.3 Asymptotic Notations

	4.2 Divide-and-Conquer Algorithms
	4.2.1 The Insertion Sort Algorithm
	4.2.2 The Merge Sort Algorithm
	4.2.3 Single Factor Optimization
	4.2.4 Integer Multiplication
	4.2.5 Matrix Multiplication
	4.2.6 Summarization

	4.3 Other Examples of Interesting Algorithms
	4.3.1 Dynamic Programming
	4.3.2 (***) The Greedy Strategy
	4.3.3 The Randomization Strategy
	4.3.4 (***) Search Algorithms
	4.3.4.1 Linear Search in O(n) Time
	4.3.4.2 Binary Search in O(logn) Time
	4.3.4.3 Hash Search in O(1) Time

	4.4 P vs. NP
	4.4.1 Time Complexity
	4.4.2 P and NP
	4.4.3 (***) Examples in the NP Class

	4.5 Exercises
	4.6 Bibliographic Notes
	References

	Chapter 5: Systems Thinking
	5.1 Systems Thinking Has Three Objectives
	5.1.1 Being Thorough
	5.1.2 Being Systematic
	5.1.3 Coping with Complexity

	5.2 Abstraction
	5.2.1 Three Properties of Abstraction: COG
	5.2.2 Data Abstractions
	5.2.2.1 Positional Notation of Number Systems
	5.2.2.2 Representing Real Numbers
	5.2.2.3 Test If Two Floating-Point Numbers Are Equal
	5.2.2.4 ASCII, Unicode, and UTF-8
	5.2.2.5 Review of Bit, Byte, Character, Integer, Array, and Slice
	5.2.2.6 Pointers and Addressing Modes
	5.2.2.7 The File Abstraction

	5.2.3 Control Abstractions

	5.3 Modularization
	5.3.1 Combinational Circuits
	5.3.1.1 Various Adders

	5.3.2 Sequential Circuits
	5.3.2.1 Various Types of Memory Cells
	5.3.2.2 A Logic Circuit with Feedbacks: The Delay Flip-Flop
	5.3.2.3 A General Organization of Sequential Circuits
	5.3.2.4 Serial Adder and Subtractor

	5.3.3 Instruction Set and Instruction Pipeline
	5.3.4 Software Stack on a von Neumann Computer

	5.4 Seamless Transition
	5.4.1 Yang´s Cycle Principle
	5.4.2 Postel´s Robustness Principle
	5.4.3 von Neumann´s Exhaustiveness Principle
	5.4.4 (***) Amdahl´s Law
	5.4.4.1 Instruction Pipeline Revisited
	5.4.4.2 Cache
	5.4.4.3 Parallel Computing

	5.5 Exercises
	5.6 Bibliographic Notes
	References

	Chapter 6: Network Thinking
	6.1 Network Terms
	6.2 Connectivity
	6.2.1 Naming
	6.2.1.1 The Namespaces of the Internet: Domain Names vs. IP Addresses
	6.2.1.2 The Namespace of the World Wide Web: URL

	6.2.2 Network Topology

	6.3 Protocol Stack
	6.3.1 The Web over Internet Stack
	6.3.1.1 How Does the Protocol Stack Work? Fetch a Home Page from a Server

	6.3.2 Elementary Web Programming
	6.3.2.1 Create a Web Server and Static Webpages
	6.3.2.2 Create a Dynamic Webpage

	6.4 Network Laws and Responsible Computing
	6.4.1 Bandwidth, Latency, and User Experience
	6.4.1.1 Bandwidth and Latency: Extreme and User-Experienced Values
	6.4.1.2 Data Compression: Lossless and Lossy Compressions

	6.4.2 Network Effect
	6.4.2.1 Metcalfe´s Law and Reed´s Law
	6.4.2.2 The Viral Marketing Phenomenon

	6.4.3 Responsible Computing
	6.4.3.1 Cybersecurity Issues
	6.4.3.2 Privacy Awareness
	6.4.3.3 Respecting Professional Norms

	6.5 Exercises
	6.6 Bibliographic Notes
	References

	Chapter 7: Projects
	7.1 Turing Adder: Turing Machine for Serial Additions
	7.2 Text Hider: Program to Hide Text in Picture
	7.3 Human Sorter: Team Computer for Quicksort
	7.4 Personal Artifact: Web Page of Creative Expression

	Chapter 8: Appendices
	8.1 Multiples and Fractions
	8.2 Programming Basics
	8.3 Pointers to Supplementary Material

	Index

