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Preface

This book provides an introduction to computer science from the computational
thinking perspective. It explains the way of thinking in computer science through
chapters of logic thinking, algorithmic thinking, systems thinking, and network
thinking. It is purposely designed as a textbook for the first computer science course
serving undergraduates from all disciplines.

The book focuses on elementary knowledge such that all material can be covered
in a one-semester course of Introduction to Computer Science. It is designed for all
students, assuming no prior programming experience. At the same time, students
with prior programming experience should not find the course boring.

The book practices an active learning method, utilizing recent advice by Donald
Knuth: “The ultimate test of whether I understand something is if I can explain it to a
computer.” The book is designed to enable students to rise from the basement level
of remembering to the top level of creating in Bloom’s taxonomy of education
objectives. More than 200 hands-on exercises, thought experiments, and projects are
included to encourage students to create. Examples of creative tasks include:

* Design a Turing machine to do n-bit addition, where n could be arbitrarily large.
This could be a student’s first design of an abstract computer.

¢ Design a team computer to do quicksort. This could be a student’s first design of a
real computer, including its instruction set and machine organization.

* Develop a computer application (a steganography computer program) to hide a
text file hamlet.txt in a picture file Autumn.bmp.

e Design a smart algorithm and a program to compute Fibonacci numbers F(n),
where n could be as large as one million or even one billion.

e Create a dynamic webpage of creative expression for a Kitty Band, which can
play a piece of music given an input string of music scores.

The material of the book has been used in the University of Chinese Academy of
Sciences since 2014, serving a required course for freshmen from all schools. It was

vii



viii Preface

also used in summer schools organized by China Computer Federation, to train
university and high-school instructors on teaching a Computer Fundamentals course
utilizing computational thinking.

Supplementary material is provided at cs101.ucas.edu.cn.

Beijing, China Zhiwei Xu
October 2021 Jialin Zhang


http://cs101.ucas.edu.cn

Introduction

This textbook is for a one-semester course of Introduction to Computer Science (e.g.,
CS101), targeting undergraduate students from all disciplines. It is a self-contained
book with no prerequisites. The little prior knowledge and notations needed are
explained along the way and summarized in Appendices.

The book is designed to introduce elementary knowledge of computer science
and the field’s way of thinking. It has the following four objectives and features:

e Embodying computational thinking. The way of thinking in computer science is
characterized by three features without and eight understandings within. Intro-
ductory bodies of knowledge are organized into chapters of logic thinking,
algorithmic thinking, systems thinking, and network thinking.

e Aiming at upper levels of Bloom’s taxonomy, with a significant portion of learning
material going from “remember” to “create,” as shown in Fig. 1. The learning
method uses Knuth’s Test: “The ultimate test of whether I understand something
is if I can explain it to a computer.” More than 200 hands-on exercises and
thought experiments are included to encourage students to create.

* Focusing on elementary knowledge without dumbing down. An explicit goal is
that all material should be coverable in one semester, for a class of hundreds of
students of all disciplines, assuming no prior programming experiences. At the
same time, experienced students should not find the course boring.

* Learning from a decade of educational experience. We spent 4 years designing
the course and 6 years teaching the material. The contents have gone through
three major revisions. For instance, version 1 has no programming. Version
2 includes Go language programming contents. Version 3 (the current version)
requires a student to write roughly 300 lines of Go code and 100 lines of Web
code, where most students can learn Web programming by themselves.

ix
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Introduction xi
Problem-Solving Examples

Computer science is a subject studying computational processes in problem-solving
and creative expression. This textbook includes over 200 problems as examples,
exercises, and hands-on projects. They provide a glimpse of how computers work
and what kinds of problem-solving and creative expression are enabled by computer
science and computational thinking.

The book shows how to solve such problems. In doing so, it introduces elemen-
tary knowledge on not only how to use a computer but also how to design a
computer. We demonstrate that computer science is intellectually interesting, by
heeding Donald Knuth’s advice: “In most of life, you can bluff, but not with
computers.” We take special care to avoid underestimating the potentials of students
and dumbing down the course material.

Six representative problems are shown below and illustrated in Fig. 2.

* Design a Turing machine to do n-bit addition, where n could be arbitrarily large,
such as n = 2° = 8, n = 2'% = 1024, or n = 2*° = 1048576. This could be a
student’s first abstract computer.

* Design a human-computer to do quicksort. A student is asked to design a team
computer to successfully rearrange a group of students ordered by students’
names to another group ordered by students’ heights, as shown in Fig. 2a. This
could be a student’s first design of a working real computer, complete with its
instruction set and machine organization of essential components.

* Compute the area of a panda. Computer science offers new abilities to solve
problems beyond ordinary school math, such as computing the irregular area of
the panda picture in Fig. 2b. The same computer application idea extends to
irregular shapes of multiple dimensions, and “area” can be replaced by volume,
mass, energy, number of particles, etc.

* Compute Fibonacci numbers F(n), where n could be as large as one billion. This
problem reveals how smart algorithms, together with systems support, can
drastically reduce computing time, from 2" to n or even logn.

* Prove a problem belonging to P or NP, intuitively. Students are asked to prove
whether a simple problem belongs to P or NP. For such algorithmic complexity
material to be included in an introductory course, the problem and the proof must
be intuitively simple, involving only elementary mathematics and a short reason-
ing sequence. A sample problem is the following: decide if 2n numbers can be
divided into two groups, each having n numbers, such that the sums of the two
groups are equal.

* Create Kitty Band. Students are asked to create a dynamic webpage showing their
personal artifacts. An example is provided by Miss Siyue Li of the University of
Chinese Academy of Sciences, who created the Kitty Band work of creative
expression, as shown in Fig. 2¢c. This witty band can play a piece of music given
an input string of music scores. As a freshman of Physics major, she finished this
project in 3 days. Half of her time was spent on thinking, designing, and making.
Coding and debugging accounted for no more than 50% of the time.
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(b) (©

Fig. 2 Three examples of problem-solving and creative expression. (Photos and graphics credits:
Haoming Qiu, Hongrui Guo, Siyue Li). (a) Sort a class of students: from an order by name to the
order by height. (b) What’s the area size of the panda? (c) Part of the Kitty Band

Intended Audience

The primary audience of this book are undergraduates interested in taking a Com-
puter Science 101 (CS101) course. The material of the book has been used in the
University of Chinese Academy of Sciences (UCAS) since 2014, serving a 3-credit,
required course of Introduction to Computer Science for freshmen undergraduate
students from the schools of Sciences, Engineering, Mathematics, Business and
Management, and Arts and Humanities.

The book is also beneficial to teachers and lecturers of an Introduction to
Computer Science course. The material of the book was used in two summer schools
organized by China Computer Federation, to train university and high-school
teachers on teaching a Computer Science 101 course utilizing computational think-
ing. The trainees came from all ranks of universities and top-ranking high schools.

The book is helpful to high-school students who are interested in taking a
computer science advanced placement course, for instance, AP Computer Science
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Principles. The contents of this book significantly overlap with the five big ideas and
six computational thinking practices of AP Computer Science Principles.

For students who prefer to study by themselves, this textbook provides supple-
mentary material and answers to even-numbered exercises. The students do need a
computer to solve programming problems.

Structure of Contents

The contents of the book are organized into seven chapters and appendices. Chapters
1 and 2 introduce the computer science field. Chapters 3, 4, and 5 explain the core of
computational thinking. They elaborate how logic thinking, algorithmic thinking,
and systems thinking make computational problem-solving into correct, smart, and
practical processes. Chapter 6 extends computational thinking to networks.
Chapter 7 describes four practice projects. The project material is best used side
by side with other chapters, as illustrated in Table 1.

Chapter 1 overviews the computer science field and computational thinking. It
introduces the ABC features without: Automatic execution, Bit-accuracy, and Con-
structive abstraction. It summarizes the eight understandings within: Automatic
execution, Correctness, Universality, Effectiveness, compleXity, Abstraction, Mod-
ularity, and Seamless transition. The eight understandings can be shortened to an
acronym: Acu-Exams.

Note that automatic execution is a feature common to both perspectives within
and without, when appreciating computer science. Chapter 1 tantalizes students with
the intriguing question: Why and how trillions of instructions can be automatically
executed in a fraction of a second, sometimes across the globe, to produce correct
computational results? A partial answer is: abstractions in computer science are
automatically executable abstractions.

The chapter also highlights the impact of computer science on society by
presenting several sophisticated common senses of the field, from ICT industry to
digital economy, from Chomsky’s digital infinity to Boutang’s bees metaphor, and
from the wonder of exponentiation to wonder of cyberspace.

Chapter 2 introduces digital symbol manipulation as the core of computational
processes. Simple but increasingly sophisticated examples are used to learn concepts
such as numbers, characters, variables, arrays, strings, conditional, loop, von Neu-
mann computer, processor, memory, I/O devices, instructions, etc. All of these
concepts are viewed through the lens of digital symbol manipulation: data are
symbols, programs are symbols, computers are symbol-manipulation systems.

Chapter 3 studies logic thinking to appreciate how to make computational
processes correct. It introduces basic concepts of Boolean logic, including proposi-
tional logic and predicate logic. It introduces the Turing machine as a theoretical
computer for multi-step computational processes. Church-Turing Hypothesis and
Godel’s incompleteness theorems are discussed to reveal the power and limitation of
computing. Accessible examples are used to explain the concepts.
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Table 1 A sample course schedule for the Spring semester of the year 2020 at UCAS

Lecture Project
Week Two classes per week Two classes per week
1 School delayed due to Covid-19
2 CS Overview
3 Symbol Manipulation
4 Symbol Manipulation
5 Logic Thinking
6 Logic Thinking Turing Adder
7 Logic Thinking Turing Adder
8 Algorithmic Thinking Turing Adder
9 Algorithmic Thinking Text Hider
10 Algorithmic Thinking Text Hider
11 Holiday break
12 Midterm Review Text Hider
13 Systems Thinking Human Sorter
14 Systems Thinking Human Sorter
15 Systems Thinking Human Sorter
16 Network Thinking Web Artifact
17 Network Thinking Web Atrtifact
18 Network Thinking Web Artifact
19 Term Review
20 Final Exam

Chapter 4 studies algorithmic thinking to appreciate how to make computational
processes smart. This includes smart ways to define, measure, design, and adapt
algorithms. After introducing the basic concepts of algorithm and algorithmic
complexity, this chapter uses some examples to explain the design and analysis of
algorithms. Discussed algorithmic concepts include divide-and-conquer, dynamic
programming, the greedy approach, randomization, hashing, sort, search, algorith-
mic complexity, and P versus NP.

Chapter 5 studies how systems thinking makes computational processes practical,
by discussing three key concepts: abstraction, modularization, and seamless transi-
tion. Elementary data abstractions and control abstractions are discussed here in one
place. Hardware and software concepts are introduced as systems modules in
increasing abstraction levels, from logic gates and memorizing devices, combina-
tional circuits, sequential circuits, to instruction pipelines and software stack. This
chapter also discusses four “laws” that make seamless execution possible: Yang’s
cycle principle, Postel’s robustness principle, von Neumann’s exhaustiveness prin-
ciple, and Amdahl’s law.

Chapter 6 extends computational thinking to networks, including the Internet and
the network of webpages. Two main knowledge thrusts, connectivity and protocol
stack, are discussed to introduce concepts and methods such as naming, topology,
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packet switching, TCP/IP protocols, DNS, WWW, viral marketing, Metcalfe’s law,
and responsible computing.

Chapter 7 describes four practice projects which are an integral part of the course.
They are inspired by the US National Research Council’s characterization: “com-
puter science is the study of ... abstract computers, ... real computers, ... and
applications of computers.” The Turing Adder project augments students’ under-
standing of abstract computer. The Human Sorter project invites students to design a
real computer. The Text Hider project represents a computer application. Finally, the
Personal Artifact project offers students an opportunity to demonstrate their capa-
bility of creative expression, by creating a dynamic webpage.

This chapter also reviews responsible computing, including code of conduct and
best practices for independent work, collaboration, and acknowledgment.

How to Use This Book?

Teaching and learning an introductory course of computer science must balance two
facts about the student community. First, many students do not have prior experience
in computer science. We polled the 2014-2018 classes of the CS101 course at the
University of Chinese Academy of Sciences, where each year there were about 340—
390 students in the class. The results show that over 90% of students had no prior
experience in CS or programming. For the 2014 and 2015 classes, over 6% of
students did not own a personal computer when they came to the university. We need
to make sure inexperienced but hard-working students can earn good grades.

Second, most students, both experienced and inexperienced, do get the hang of
introductory computer science quickly. We need to ensure that students still find
CS101 intellectually interesting, not a watered-down, boring course.

Based on our 6-year teaching experience, we offer the following suggestions:

* Normal learning with contents augmented by Bloom’s taxonomy.
¢ Utilizing Knuth’s Test to instantiate Bloom’s taxonomy for CS101.
* Focusing on the elementary and leaving space for experienced students.

This textbook can be used in a CS101 course in the normal way, with lectures,
homework exercises, projects, and exams. Some lecturers and students may find that
this textbook contains a lot of material for mind-active and hands-on learning. That
is, the book aims at the upper levels of Bloom’s taxonomy.

Shown in Fig. 1, Bloom’s taxonomy is a taxonomy of educational objectives first
proposed in 1956 and revised in 2001. It organizes six levels of educational
objectives into a pedagogic pyramid. We find that it is feasible and desirable to
aim at higher levels of Bloom’s taxonomy in a CS101 course.

A significant portion of this book is designed to enable lecturers and students to
rise from the basement level of “remember” to the top level of “create” in Bloom’s
taxonomy. For instance, after learning an adder, students may be asked to design a
never-discussed subtractor. The knowledge and capability needed are beyond simply
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memorizing. The Personal Artifact project asks a student to independently create a
dynamic webpage by the end of the semester. In doing so, the students learn how to
turn personal insights and creative ideas into computational artifacts. The book
provides a library of dozens of webpages created by past students and teaching
assistants. Students are enabled to create their webpages, learning by themselves
Web programming along the way, including the needed HTML, CSS, and JavaScript
knowledge, as well as proper code of conduct.

It was not until the Spring semester of the year 2020 that we realized that the
learning method we have practiced for 6 years can be summarized in one sentence:
utilize Knuth’s Test to instantiate Bloom’s taxonomy.

In an interview in February 2020, Donald Knuth stated beautifully an instantia-
tion of the “create” level in Bloom’s taxonomy for computer science education:

The ultimate test of whether I understand something is if I can explain it to a computer. I can
say something to you and you’ll nod your head, but I’m not sure that I explained it well. But
the computer doesn’t nod its head. It repeats back exactly what I tell it. In most of life, you
can bluff, but not with computers.

We call this “ultimate test” Knuth’s Test. It offers students a pedagogic tool to
check if they have learned a unit of knowledge or capability: see if they can explain it
to a computer. Running a program on a PC is an obvious way to perform Knuth’s
Test. Executing a computational process on a human-computer as a thought exper-
iment is another way. A student cannot bluff with either type of computer.

The above-suggested practice of teaching and learning could go out of hand, by
exposing students to too much material. Thus, we have the third suggestion:
focusing on the elementary and leaving space for experienced students. The contents
of the book have been purposely designed to focus on the elementary of computa-
tional thinking, such that the material can be covered in full in one semester. Material
targeting experienced or hungry students is explicitly marked.

For instance, although dozens of programming examples and exercises are
included, a student is required to write only 300 lines of code for Go programming.
The emphasis is on general ideas and methods of programming, not on Go-specific
syntax and semantics. When facing the new task of creating a dynamic webpage,
most students can quickly learn Web programming by themselves.

Suggested schedules for a 3-credit, 60-period course, and a 2-credit, 40-period
course are shown in Tables 2 and 3, respectively. Note that 40% of class time is
devoted to the projects for the 3-credit course, and 30% for the 2-credit course. A
homework assignment is handed out for each of the first six chapters.

Due to Covid-19, we had to conduct CS101 as an online course for the Spring
semester of 2020 (Table 1). The students did fine, comparing to previous classes.
However, the working time of lecturers and TAs increased by 40%. This was mainly
due to first-time overheads. Future online courses could be more efficient.
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Table 2 Suggested schedule for a 3-credit course

Xvii

Lecture Project Due date
Week Two classes per week Two classes per week 23:30 pm, Sunday
1 CS Overview
2 Symbol Manipulation Homework 1
3 Symbol Manipulation Homework 2
4 Logic Thinking
5 Logic Thinking Turing Adder
6 Logic Thinking Turing Adder Homework 3
7 Algorithmic Thinking Turing Adder Project 1
8 Algorithmic Thinking Text Hider
9 Algorithmic Thinking Text Hider Homework 4
10 Midterm Review Text Hider Project 2
11 Systems Thinking Human Sorter
12 Systems Thinking Human Sorter Homework 5
13 Systems Thinking Human Sorter Project 3
14 Network Thinking
15 Network Thinking Web Artifact
16 Network Thinking Web Artifact Homework 6
17 Term Review Web Atrtifact Project 4
18 Final Exam
Table 3 Suggested schedule for a 2-credit course
Lecture Project Due date
Week Two classes per week Two classes per week 23:30 pm, Sunday
1 CS Overview
2 Symbol Manipulation Homework 1
3 Symbol Manipulation Homework 2
4 Logic Thinking
5 Logic Thinking Turing Adder Homework 3
6 Algorithmic Thinking Turing Adder Project 1
7 Algorithmic Thinking Text Hider Homework 4
8 Midterm Review Text Hider Project 2
9 Systems Thinking
10 Systems Thinking Human Sorter Homework 5
11 Network Thinking Human Sorter Project 3
12 Network Thinking Homework 6
13 Term Review
14 Final Exam
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Notations

Some widespread programming notations are used in this book: the camel notation,
the dot notation, the slash notation, the quotation marks, and notations for hexadec-
imal and Unicode values.

The camel notation is also called the camel case notation. It is used to denote
various names (e.g., variable or file names), such as MyPicture, studentsMap, and
doctoredAutumn. This practice writes the phrase of a name together with the first
letter of each word capitalized, resembling the humps of a camel. The first word may
all be in a small case.

Students may have already seen the dot notation used as a file extension, such as
myHW?2.pdf, or in Web domain names such as www.ucas.edu.cn. The dot notation
is also used to denote the component of a program construct, such as the member of a
struct variable or the function in a program package. For instance, the notation

fmt.Println
calls the Println function in the fmt package. The dot notation
A.Key

refers to the key component in variable A, which has a data type of struct.
The slash (/) notation is used mainly to denote the path name of a file. For
instance, the following slash notation

/cs101/Prj2/ucas.bmp

denotes the full path name of a file, where the first slash denotes the root directory,
followed by the cs101 subdirectory, followed by the Prj2 sub-subdirectory, followed
by the real file ucas.bmp. The four entities are separated by three slashes.

The single quotation marks denote a character, e.g., ‘A’, ‘6°, and ‘?’. The double
quotation marks denote a character string, e.g., “Alan Turing”.

The Ox and 0X notations are used to denote hexadecimal numbers, such as 0x36,
0x1f, and 0X1F. Some programming systems differentiate these two notations for a
small case and a capital case. We do not differentiate them unless required.

The U+ notation denotes a Unicode value. For instance, the Chinese character
‘7%’ and the Euro sign ‘€” have Unicode encoding values of U+5FD7 and U+20AC,
respectively.

A 3-star notation, ‘***’) is used to mark material targeting experienced and
hungry students. Material for all students has no marking.

An Example ends with the notation ==, the trigram symbol for the mountain in
Book of Change, which symbolizes “the end”. The following is an instance.


http://www.ucas.edu.cn
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Example 1. (110.101), = (?)10
(110.101),=1 x22+1x2'+0x 2" +1x 27 '+0x 2 2+1 x2>=4+2+0.5+0.125
= (6.625)1o.

Supplementary Material

The companion website cs101.ucas.edu.cn provides supplementary material for
(1) lecture and projects slides, (2) the source code of all programs, and (3) solutions
to even-numbered homework exercises, as well as other teaching and learning aids.
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Chapter 1 ®)
Overview of Computer Science e

The ultimate test of whether I understand something is if I can
explain it to a computer. . .. In most of life, you can bluff, but
not with computers.

—Donald Knuth, 2020

Computer science is an academic discipline that studies computational processes in
solving problems in scientific, engineering, economic and social domains. Compu-
tational thinking is the way of thinking by computer scientists, which underlies the
bodies of knowledge in the computer science discipline. Computer science provides
an intellectual foundation supporting the information technology industry, the
worldwide digital economy and the information society. It exhibits three wonders
and three persuasions while permeating modern civilizations.

In this chapter, students will see and use a number of small computer programs.
They will start writing programs in Chap. 2.

1.1 Computational Processes in Problem Solving

Computer science studies computational processes, i.e., processes of information
transformation. It differs from fields of natural sciences such as Physics, Chemistry,
or Biology, which mainly study processes of matter and energy transformations.

A computational process is a problem-solving process of information transfor-
mation, via a sequence of digital symbol manipulation steps. Computational pro-
cesses often manifest as automatic executions of programs on computer systems.

A binary digit (bit) takes on a value of 0 or 1. A digital symbol is any notation
that is representable as one or more bits, to denote any concrete or abstract entity.
Manipulation is a sequence of operation steps on digital symbols, where the length
of the sequence can be one or many. Operation steps are also called operations.

An algorithm is a finite set of rules specifying a sequence of operations on digital
symbols to solve a problem. A program is an expression of an algorithm in a
computer language, such as the Go programming language. A program segment,
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Computing
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Target Domain Cyberspace

Fig. 1.1 Computational processes in problem solving: the PEPS model

part or whole, is called code. A group of digital symbols is called data. An algorithm
often produces output data from input data.

A program is expressed in a programming language as a group of digital symbols.
Thus, programs can be viewed as data. When programs and data are stored in a
computer in a non-volatile way (i.e., data still exist even when the power is turned
off), they are called files. We store program files and data files in a computer.

As illustrated in Fig. 1.1, a computational process in problem solving involves
four aspects, abbreviated as PEPS for Problem, Encoding, Computation Process,
and Computer System. Cyberspace refers to the right part of Fig. 1.1, namely,
computer systems plus the computational processes executing on them.

¢ Problem. We study computational processes to solve problems in target
domains, i.e., fields of applications. Computer science can be used to help solve
problems in many fields, including mathematics, natural sciences, social sciences,
engineering and technology, economics and business, and even arts and human-
ities fields. We will elaborate why computer science permeates when discussing
digital infinity and computational lens in Sect. 1.3.

¢ Encoding. Domain problems are converted to computational problems to be
solved in the cyberspace, which consists of computational processes automati-
cally executing on computer systems. This converting process is called encoding
or modeling, often done by humans. For a specific domain problem, encoding
generates a computational problem and an expected computational solution,
manifesting as a model of the problem in cyberspace and an algorithm to solve
the problem. Encoding often determines the accuracy and precision of the
solution. Note that the encoding process is actually a bidirectional process. It is
common practice that humans are ultimately responsible for converting the
domain problem in the target domain to the computational problem in the
cyberspace, and then converting the solution in the cyberspace back to the
solution in the target domain. There is much opportunity for human’s imagination
and creativity to play out in this bidirectional mapping, including formulating the
problems, designing approaches and solutions, deciding human-computer sym-
biosis and interaction, and iterative optimization.
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Fig. 1.2 Two processes for computing the 10th Fibonacci number F(10)

* Computational Process. A computational process often manifests as a running
computer program, which embodies the human designed model and algorithm to
solve the problem. The program specifies the computational process of informa-
tion transformation via step-by-step digital symbol manipulations. Program-
ming is the activity to design and develop a program. To obtain the final
effective and efficient computational process, we may need many iterations of
encoding, programming and execution, even when the underlying computer
system is given. Encoding, designing, and programming can be combined into
one process in practice, especially when the problem is simple or small.

¢ Computer System. The computer system may be in many forms, abstract or real.
The examples, exercises and practice projects in this book mostly use two types
of real computer systems: the student’s laptop computer and the World Wide
Web. The Human Sorter project creates a real computer consisting of humans.

Example 1.1. Computing a Small Fibonacci Number
A problem can be solved by different encodings. Figure 1.2 illustrates two processes
in computing the 10th Fibonacci number F(10): one by manual computing and the
other by a computer program. Contrasting these processes highlights the importance
of automatically executed computational processes.

Problem. The problem is to find the 10th Fibonacci number F(10) in the domain
of mathematics. Note that the mathematical definition of Fibonacci numbers is:

F(0)=0, F(1)=1; F(n)=F(n-1)+F(n-2) when n>1.

A student may use the mathematical definition to manually compute the first
11 Fibonacci numbers using a pen and paper. Given F(0)=0, F(1)=1, one has

F(2)=F(1)+F(0)=1+0=1,
F(3)=F(2)+F(1)=1+1=2,



4 1 Overview of Computer Science

Output F(10) // n and F(n) are natural numbers
where F(n) is defined as
if (n=0 or n=1) then F(n)=n else F(n)=F(n-1)+F(n-2)

(a)

package main // Program setup
import "fmt"
func main() {
fmt.Println("F(10)=", fibonacci(10)) // Output F(10)
}
func fibonacci(n int) int { // fibonacci(10)
ifn==0In==1{ /1 If n=0 OR n=1, (Il means OR)
return n /" return n and exit
} /I Recursively call
return fibonacci(n-1)+fibonacci(n-2) /! fibonacci(9) and fibonacci(8)

}
(b)

> go build fib -10.go
> /fib-10

F(10)= 55

>

(c)

Fig. 1.3 Computational process for finding the 10" Fibonacci number F(10). Texts after a double
slash (//) are comments to explain the code. (a) An algorithm to find F(10) directly from the
mathematical definition. (b) A Go program fib-10.go that implements the algorithm. (¢) Compile
fib-10.go and execute fib-10 to produce the output

F(4)=F(3)+F(2)=2+1=3,
F(5)=F(4)+F(3)=3+2=5,
F(6)=F(5)+F(4)=5+3=8,
F(7)=F(6)+F(5)=8+5=13,
F(8)=F(7)+F(6)=13+8=21,
F(9)=F(8)+F(7)=21+13=34,
F(10)=F(9)+F(8)=34+21=55.

This manual calculation process is tedious and time consuming. For a small n,
e.g., n=10, a student may manually compute F(n) in a few seconds or minutes. But
how about finding F(50) or F(5000000000)? Fortunately, step-by-step computa-
tional processes that are tedious and time consuming for humans are often good
candidates for computer processing. Figure 1.2 shows another process for computing
F(n), which is a process of information transformation via step-by-step digital
symbol manipulations. This cyberspace solution is further elaborated in Fig. 1.3.

Encoding. In the cyberspace, the problem is to compute F(10) automatically by a
computer, not by manual calculation. Its solution is encoded as a recursive algorithm
directly from the mathematical definition, as shown in Fig. 1.3a. It is a recursive
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algorithm because the function F calls itself recursively in F(n)=F(n-1)+F(n-2). Note
that this recursive algorithm in cyberspace is different from the algorithm of the
manual calculation process in the mathematics domain.

Computational Process. The computational process is embodied in the Go
program of Fig. 1.3b, which implements the algorithm in Fig. 1.3a. This is a
straightforward implementation, almost literally copying Fig. 1.3a into the Go
programming language syntax. Each line of the program code is called a statement.
Recall that we use code to refer to a segment of a program. The first three statements
are to set up the program. The function name “F” is replaced by a longer but more
informative name “fibonacci”. The statement

fmt.Println("F(10)=", fibonacci (10))

is to Output F(10), that is, to print out the result value of F(10). The next 6 lines of
code form a subprogram, called a function, which does the actual computation of
Fibonacci numbers. Given an integer n as the input parameter, the function generates
an integer output fibonacci(n) by implementing the algorithm in Fig. 1.3a.

The computer screen outputs are shown in Fig. 1.3c. To summarize, the actions of
encoding, programming, and entering commands are done by the human user, but
actual compilation and program execution are done by the computer. This way of
dividing labor is called human-computer symbiosis.

e Human: convert the math problem to the Go program fib-10.go.

e Human: enter the compile command “go build fib-10.go”.

e Computer: execute command “go build fib-10.go”, to compile the high-level
language program file fib-10.go into an executable program file fib-10. Com-
pilation refers to converting a high-level language program to an executable
program, also called a machine code program.

* Human: enter the program execution command “./fib-10".

* Computer: execute command “./fib-10”, to execute program fib-10 and produce
screen output “F(10)=55".

Computer System. In this example, the computer is the student’s laptop com-
puter supporting the Go programming language and the Linux operating system.

The above simple example already reveals the rich meaning of the concepts of
“computational process in problem solving”, as well as of “step-by-step digital
symbol manipulation”. After encoding, the mathematical problem is converted
into a computational problem and a solution. The algorithm in Fig. 1.3a, the Go
program in Fig. 1.3b, and the compilation and execution processes in Fig. 1.3c, all
represent processes of information transformation via digital symbol manipulations.

It is obvious that the final result F(10)= 55 is a combination of digital symbols. It
may not be as obvious that the Go program fib-10.go and the executable program file
fib-10 are also digital symbols. Manipulation operations include steps of
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Fig. 1.4 Screen display of the machine code fib-10: scrambled symbols

programming, compilation, machine code execution, as well as more detailed
operations described inside the Go program of Fig. 1.3b.

Why do we go this roundabout way of (1) writing a program fib-10.go, (2) com-
piling fib-10.go into fib-10, and (3) executing fib-10? Why don’t we simply write
and execute fib-10?

The computer only understands and executes a machine code program, such as
fib-10, which consists of a sequence of 0’s and 1’s. When displaying fib-10 on the
computer screen, one sees the scrambled result shown in Fig. 1.4. It is difficult for
human to understand a machine code program such as fib-10. For this reason, a
machine code program such as fib-10 is also called a low-level language program.

It is easier for the human to understand a high-level language program. However,
the computer cannot directly understand and execute a high-level language program,
such as fib-10.go. A compiler is needed to convert a high-level language program
into a machine code program that is directly executable on a machine.

During this compilation process, the compiler also checks for and reports various
compile-time errors, such as syntactic errors in the high-level language program
fib-10.go. However, runtime errors may still exist in the compiled machine code
fib-10, even when no error is reported during the compilation process. Bugs are the
term used to refer to all errors of a program, including compile-time errors and
runtime errors.

Refer to Fig. 1.3c. The command “go build fib-10.go” directly execute on a
computer but looks like a high-level language statement. In fact, commands are
high-level language programs called shell scripts. What happens is that when human
enters a command, a software tool, called interpreter, works behind the scene to
automatically interpret (i.e., convert the command into machine code and then
execute, one statement at a time). The computer actually executes machine code of
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Fig. 1.5 Computer science enables us to compute sizes of irregular shapes. (a) School Mathematics
Regular shapes. (b) College Mathematics Curly shapes. (¢) Computer Science Irregular shapes

the command, not the command itself. An operating system such as Linux normally
provides a command interpreter called shell.

Computing is more than automatic execution of arithmetic operations. Three
cases below are used to demonstrate the power and beauty of computational pro-
cesses in augmenting other disciplines, showing that computational thinking can
change the way of thinking in solving problems by bringing in new values.

Step-by-step computing is powerful. The basic idea in Example 1.1 looks trivial:
step by step computing of the sequence of Fibonacci numbers. However, Fibonacci
sequence was a key innovative idea enabling scientists to solve Hilbert’s 10th
problem, an important mathematics problem asked by David Hilbert in 1900. The
problem is to find an algorithm to determine whether any given Diophantine
equation has an integer solution. The answer, provided in 1970, is No. It is interest-
ing to note that this 70-year work is a multidisciplinary research, where the main
result is called the MRDP Theorem, after four people: Yuri Matiyasevich, a Russian
mathematician; Julia Robinson, the first female President of the American Mathe-
matical Society; Martin Davis, a computer scientist; and Hilary Putnam, a past
President of the American Philosophical Association.

Augment the problem. Computational thinking can extend the scope of problems,
enabling people to solve problems traditionally intractable. A case in point is to
compute the area of an irregular shape. Mathematics in primary and high schools
enable students to compute the area of a regular shape enclosed by straight lines and
circles. College Mathematics goes further by enabling students to compute the area
of a curly shape enclosed by curves of two or more functions. For instance, the size
of the area in Fig. 1.5a is the sum of a rectangle and a semicircle, which is
W - H + (W/2)* - n/2. The size of the area enclosed by the straight line y = 1.1 - x
and the square curve y = 0.11 - x* in Fig. 1.5b is folo(l.lx —0.11x%)dx.

However, such school or college math is inadequate to handle the task of
computing the area of the panda picture in Fig. 1.5c, which is an example of irregular
shapes. Computer science offers new capabilities to routinely compute such irregular
areas. A specific method called Monte Carlo simulation is shown in the Personal
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Artifact project. The same idea can extend to multiple dimensions, and can be used
to compute volume, mass, energy, number of particles, etc.

Change approaches to the problem. Computational thinking can inspire radically
new approaches to domain problems. A case in point is Human Whole-Genome
Shotgun Sequencing. The complete sequencing of the human genome is a landmark
endeavor in biology and health science. In 1990, the United States government
officially started the Human Genome Project (HGP), and later set the goal of
sequencing the human genome by 2005 at US$1 per chemical base pair. That is,
the total dollar and time costs would be $3 billion and 15 years. However, by 1998,
only 5% of the human genome were sequenced.

In 1997, Gene Myers and Jim Weber proposed to attack the human genome
sequencing problem by a radical approach, called Whole-Genome Shotgun
Sequencing. The idea is to break down the DNA sequence into random fragments,
sequence those fragments, and then assemble them in the correct genome order. This
approach was used to successfully sequence the genome of H. influenzae bacterium
of 1.8 million base pairs. Myers and Weber projected the approach could apply to the
much larger human genome, because we could heavily utilize effective algorithms
and much faster computing technology. The established community rejected their
proposal, judging the method would fail for the human genome with 3 billion base
pairs.

In 1998 Myers joined a newly founded company called Celera Genomics to
realize his computation-heavy Human Whole-Genome Shotgun Sequencing
approach. His team developed new algorithms and more than 500 thousand lines
of code for a 7000-processor parallel computer. This approach proved to be effec-
tive. In 9 months from September 1999 to June 2000, Celera finished a rough draft
sequence of the human genome. On June 26, 2000, Celera joined other scientists, US
President Bill Clinton and British Prime Minister Tony Blair to announce the
completion of an initial sequencing of the human genome.

1.2 Characteristics of Computational Thinking

Computational thinking is the way of thinking by computer scientists, which under-
lies and manifests as the bodies of knowledge in the computer science discipline.
When viewed from the perspective of a way of thinking, computer science and
computational thinking are synonymous.

Computational thinking can be characterized from three angles: (1) the three
features without, (2) the eight understandings within, and (3) the research view of
computer science. They are not separate things but different perspectives. Compu-
tational thinking is the synergy of all these perspectives, similar to a symphony
played on multiple music instruments.
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1.2.1 The Three Features Without

When viewed from the outside, namely, from the computer user’s perspective,
computer science exhibits three features distinct from other fields, called the ABC
features: Automatic execution, Bit accuracy, and Constructive abstraction. The
ABC features are listed in Table 1.1 with examples and counterexamples.

Automatic execution is easy to understand. Computer science targets those
bodies of knowledge (whether they are theory, hardware, or software) which enable
computational processes to be automatically executed on computers. That is why
computer science emphasizes exact, step-by-step processes. Only such processes can
be understood by computers, thus amiable to mechanic, step-by-step automatic
execution. Even for human-in-the-loop processes, computational thinking will try
to make them largely automatic and seamless.

This feature can be seen by comparing the two scenarios in Table 1.1: (1) com-
puting the 10™ Fibonacci number F(10) by human using pen and paper, where each
step needs human to manually operate; and (2) computing F(10) by running the
fib-10.go program, where the computational process is executed automatically on a
computer. The second scenario is much faster, especially when the problem is to
compute a larger Fibonacci number such as F(50), F(5000) or F(5000000).

Example 1.2. Computing Larger Fibonacci Numbers F(50) and F(100)

The manual calculation process of Fibonacci numbers in Example 1.1 is tedious and
slow. This becomes obvious if students are asked to manually compute a larger
Fibonacci number, such as to compute F(50). In contrast, automatic execution on a
computer allows us to compute F(50) easily. We only need to slightly modify fib-10.
go by changing 10 to 50, and then compile fib-50.go and execute, to get F(50)=
12586269025 in a few minutes. How about computing F(100)? Repeat the above
programming-compilation-execution processes by changing 10 to 100. This will
reveal two caveats of automatically executed computational processes: an apparently

Table 1.1 The ABC features at a glance

Feature

Example

Counter example

Automatic execution of a computa-
tional process on a computer

Computing the 10th
Fibonacci number by
running fib-10.go

Computing the 10th Fibonacci
number by human using pen
and paper

Bit accuracy: a computational pro-
cess is accurate to every bit

Processing scientific
experimental data by a
computer

An experiment judged by sta-
tistically significant result
(P-value <0.05)

Constructive abstraction: to form a
general entity from individual
instances by smartly composing a
group of more primitive entities

The von Neumann
model abstracting many
real computers.

A program to find
Fibonacci numbers by
dynamic programming

A human’s feeling of happi-
ness

A damaged binary code file
for the same Go program,
consisting of gibberish bits




10 1 Overview of Computer Science

correct computational process could (1) become terribly slow and (2) produce
incorrect results. The moral: being automatic is not enough.

Bit accuracy is also intuitive. Any scientific field needs its academic rigor by
pursuing accuracy and precision. Computer science pursues bit accuracy: any
computational process is accurate and precise up to every bit. Here bit is short for
binary digit, the smallest digital symbol which has a value of 0 or 1.

A counterexample of bit-accuracy is shown in Table 1.1. Scientific experiments
have requirements of accuracy and precision according to the standards and best
practices of their domains. For instance, we may see expressions such as “experi-
ments results are statistically significant when the p-value is less than 0.05”, “the
error is no more than 3 Angstrom (A)”, and “the results are precise up to four digits
after the decimal point”. All of these are not bit accurate.

Computer science works complementarily with these domains by guaranteeing
bit accuracy when processing experimental data, doing simulation, or conducting
theoretical reasoning, while each domain uses its own degree of accuracy and
precision. In other words, bit accuracy and domain accuracy work hand in hand.

Example 1.3. Using Binet’s Formula to Compute Larger Fibonacci Numbers
We can use a closed form mathematical formula to make the computation of F(n) faster.

We utilize the so called Binet’s formula F(n) = &\/;p)”, where ¢ = % is the

golden ratio. Note that this formula involves real numbers such as /5 and %g Letus
use this formula to compute F(50), F(100), and F(500), and see what happens. The
revised computational process using a new program fib.binet-50.go is shown in Fig. 1.6.

This fib.binet-50.go program can be automatically executed, and is indeed much
faster than fibonacci-50.go. However, it does not produce the exact integer results,
but only approximate results represented as real numbers. To easily see the differ-
ences, we list below the exact integer results and the corresponding approximate
results for F(50), F(100), and F(500). Exact results are in boldface.

F(50) = 1.2586269024999998e+10 = 1258 6269 024.9 99998
F(50) = 1258 6269 025

F(100) | = 3.542 2484 8179 2618 e+20 = 3542 2484 8179 2618 00000
F(100) = 3542 2484 8179 2619 15075

F(500) | = 1.3942322456169767e+104

F(500) |=139423224561 6976 7000 0000 0000 0000 0000 0000 0000 000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000

F(500) | =13942322 4561 6978 8013 9724 3828 7040 7283 9500 7025 6587 6973 0726 4108
9629 4832 5571 6228 6329 0691 5576 5887 6222 5212 94125
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Output F(50) // n and F(n) are real numbers

where F (n) = w, and ¢ = %ﬁ is the golden ratio.
(a)

package main

import "fmt"

import "math" // utilize the math library

func main() {
fmt.Println("F(50)=", fibonacci(50))

}
func fibonacci(n int) float64 {

sqrt5 := math.Sqrt(5) /I assign the square root of 5 to sqrt5
phi := (14sqrt5)/2 // assign the golden ratio to phi
return (math.Pow(phi,float64(n))-math.Pow((1-phi),float64(n)))/sqrtS
}
(®)

> go build fib.binet-50.go

> ./ fib.binet-50
F(50)=1.2586269024999998¢+10
>

(©)

Fig. 1.6 Using Binet’s formula to compute the 50™ Fibonacci number F(50). (a) An algorithm to
find F(50) directly from Binet’s formula. (b) A Go program fib.binet-50.go that implements the
algorithm. (¢) Compile fib.binet-50.go and execute fib.binet-50 to produce the output

Since Binet’s formula involves real numbers, the fib.binet-50.go program in
Fig. 1.6 utilizes 64-bit floating-point numbers (computer representation of real
numbers) and the system-provided “math” library. Given an integer number n as
input, the fibonacci function returns a 64-bit floating-point number as output.

The value of the returned number is %, which in Go notation is:

(math.Pow(phi,float64(n))-math.Pow((1-phi),float64(n)))/math.Sqrt(5)

in Fig. 1.6b, where the power function math.Pow(a, b) returns value ab, and float64
(n) returns value of integer n in 64-bit floating-point number representation.
Program fib.binet-50.go computes Fibonacci numbers using floating-point num-
bers. Some precision is lost during the problem encoding stage. But the fib.binet-50.
go program itself is still bit accurate in that all operations are accurate up to every bit
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of the floating-point numbers involved. For instance, F(100)=F(99)+F(98) is com-
puted as follows.

F(98)= 1.353 0185 2344 7067 e+20 = 1353 0185 2344 7067 00000
F(99)= 2.189 2299 5834 55514 e+20= 2189 2299 5834 5551 40000
F(100)=3.542 2484 8179 2618 e+20= 3542 2484 8179 2618 00000

Example 1.4. Caryl Rusbult’s Investment Model of Relationship
Scientific progress can be made without mathematical exactness or bit accuracy.
Sometimes it is meaningful just to establish that factor A is positively (or negatively)
related to factor B, when investigating a phenomenon involving factors A and B. Let
us consider an example in psychology.

The domain problem has to do with domestic violence: why does a spouse being
battered not leave an abusive relationship but stay committed to marriage? Professor
Caryl Rusbult proposed a theory of investment model for close relationship:

Commitment o (Satisfaction x Investment)/Alternative

which can partially answer this question. A spouse’s commitment to marriage is
positively related to satisfaction and investment, but negatively related to alterna-
tives. A battered spouse stays in an abusive relationship, not due to marriage
satisfaction, but because she/he has invested heavily (e.g., having children) or has
poor alternatives (e.g., without independent income).

Rusbult’s investment model is not mathematically exact or bit accurate, but it is
indeed a scientific progress, an inspirational theory which can lead to social policies
and guides for individual actions. Computing and mathematics can be used to help
test whether real data show that commitment is related positively to satisfaction and
investment, but negatively to alternatives.

Doman scientists, such as psychologists, utilize their professional expertise and
domain knowledge to advance their fields and contribute to society. Computer
scientists complement their efforts by offering mental tools and computing hardware
and software that feature automatically executed, bit-accurate, constructive abstrac-
tions of information transformation.

Constructive abstraction can be less intuitive. The confusion is partly due to the
fact that the word “abstraction” refers to both an action and its outcome. That is,
abstraction (the action) is the process of producing an abstraction (the outcome),
which captures the essential aspect of an entity while ignores irrelevant aspects. All
scientific disciplines have abstractions, but computer science emphasizes construc-
tive, automatically executed abstractions of information transformation.

Constructive abstraction has three layers of meaning.
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» The first is abstraction, namely, to abstract from concrete instances to the general
concept. To quote from the Webster Dictionary: abstraction is “to form universal
representations of the properties of distinct objects”.

* The second layer of meaning is constructive, in that the resulting abstraction (the
general concept) is constructive, which means that it is a step-by-step integration
of more primitive symbols and operations.

e The third layer of meaning is smart construction. Computer science strives to
understand the world and smartly construct abstractions based on such under-
standings. That is, computer science strives for smart constructions, not ad hoc,
arbitrary actions or processes, although sometimes computational processes may
use brute-force actions (e.g., exhaustive enumeration) and seemingly arbitrary
random operations (e.g., randomly picking a number).

Refer to Table 1.1. The von Neumann model of computer says that a computer is
comprised of a processor, a memory, and one or more input-output devices. It is an
abstraction of many real computers, such as the student’s laptop computer. It is
constructive because a computer is composed of three more primitive parts in a
unique way. The three primitive parts are processor, memory, and input-output
devices. More details of the von Neumann model will be discussed in Chap. 2.

The concept of happiness is an abstraction of many individuals’ happy feelings,
but it is not constructive in that it is not a step-by-step integration of more primitive
things. It is an abstraction of the first layer meaning but not of the second layer.

As an example of smart construction, we mention in Table 1.1 a Go program for
computing Fibonacci numbers that utilizes a technique called dynamic program-
ming. As discussed in Example 1.5 below, this program fib.dp-50.go is smarter and
much faster than the program fib-50.go in Example 1.2.

In contrast, the binary executable file compiled from the same Go program, when
damaged by destroying some bits, is not smartly constructive anymore. In fact, it
ceases to be an abstraction, but is only a set of gibberish bits.

Example 1.5. Contrasting Four Processes to Find Fibonacci Number F(50)

The manual calculation process for Fibonacci numbers in Example 1.1 produces
exact results, but it is not automatic and very tedious. Computing via fib-10.go is
automatic, but it is slow when n gets large. Example 1.3 uses Binet’s formula to
compute Fibonacci numbers. It is faster but does not produce exact integer results.

Can we have a smarter way to compute Fibonacci numbers while insisting on
getting exact integer results? Yes, we can. We will see in Chap. 2 that there is indeed
a smarter way, called dynamic programming, to speed up the Fibonacci numbers
computation significantly. The trick is to memorize intermediate results, avoiding
repeated computations.

We will discuss the program details in later chapters. Here we only need to
execute the four computational processes and contrast their behaviors, as summa-
rized in Table 1.2. These four processes are the manual process in Example 1.1, and
the three automatic processes using fib-50.go in Example 1.2, fib.binet-50.go in
Example 1.3, and fib.dp-50.go in Fig. 2.9, respectively.
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Table 1.2 Contrasting four computational processes for computing Fibonacci number F(50)

Process Execution time Produced result
Manual 135-600 s May produce correct result 12586269025
May produce incorrect result, e.g., 13586269025
fib-50.go 725 s 12586269025
Correct, exact result guaranteed
fib.binet-50.go 0.011s 1.2586269024999998e+10 = 12586269024.999998
Correct, inexact result with a rounding error of 0.000002
fib.dp-50.go 0.059 s 12586269025
Correct, exact result guaranteed

The manual process is tedious thus prone to making mistakes. When the manual
process produces a correct result, it is an exact integer value, i.e., 12586269025. The
other three computational processes are automatic and guaranteed to produce correct
results. The program using Binet’s formula produces a correct floating-point num-
ber, 1.2586269024999998e+10, or 12586269024.999998, which is an approximate
(inexact) value, with a rounding error (roundoff error) of 0.000002. The other two
programs, fib-50.go and fib.dp-50.go, are guaranteed to produce correct and exact
result F(50)=12586269025.

The manual process takes about 3—10 min to produce F(50)=12586269025,
which actually consumes less time than the computational process utilizing the
recursive program fib-50.go. The other two computational processes are much faster,
by four orders of magnitudes.

1.2.2 The Eight Understandings Within

Looking from inside of the computer science field, namely, from the designer’s
perspective, we can understand computational thinking from eight aspects, as shown
in Box 1.1. The eight understandings are pronounced as Acu-Exams.

The first understanding is automatic execution, which is actually the “A” in the
ABC features without. In other words, step-by-step mechanic automatic execution of
digital symbol manipulation is the most fundamental characteristic of computational
thinking, both without and within. It underlies all the other seven understandings.
Computer science studies logic that is automatic executable logic, algorithms that are
automatic executed algorithms, abstractions that are automatic executed
abstractions.

The other seven understandings address fundamental issues listed below, which
are grouped into three parts of logic thinking, algorithmic thinking, and systems
thinking, to be discussed in detail in Chaps. 3-5.
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* Logic thinking addresses the issue: “What can be computed on a computer
correctly?” To put it simply, logic thinking makes computational processes
correct.

¢ Algorithmic thinking addresses the issue: “Given a computational problem, is
there a smart way to solve it efficiently on a computer?” To put it simply,
algorithmic thinking makes computational processes smart.

* Systems thinking addresses the issue: “How to construct a practical computing
system, both general-purpose and specific?” To put it simply, systems thinking
makes computational processes practical.

Box 1.1. Eight Understandings of Computational Thinking: Acu-Exams

* A: Automatic execution. Computational processes are automatically exe-
cuted step-by-step on computers.

* C: Correctness. The correctness of computational processes can be rigor-
ously defined and analyzed by computational models such as Boolean logic
and Turing machines.

e U: Universality. Turing machine compatible computers can be used to
solve any computable problems.

* E: Effectiveness. People are able to construct smart methods to solve
problems effectively.

* X: compleXity. These smart methods, called algorithms, have time com-
plexity and space complexity when executed on a computer.

* A: Abstraction. A small number of carefully crafted systems abstractions
can support many computing systems and applications.

* M: Modularity. Computing systems are built by composing modules.

* S: Seamless Transition. Computational processes smoothly execute on
computing systems, seamlessly transitioning from one step to the next step.

The issue in logic thinking can be further divided into two problems, which lead
to Understandings C and U. First, what is correctness? It turns out that the correct-
ness of computational processes can be rigorously defined and analyzed with the
help of computational models such as Boolean logic and Turing machine. Second, is
there a general-purpose computer that can correctly compute any computable enti-
ties? The answer is a rigorous Yes, in the form of Church-Turing Hypothesis. In
addition, we can rigorously define what is not computable and provide concrete
evidence, such as the Turing machine halting problem and Godel’s incompleteness
theorem.

Algorithmic thinking involves how to make computational processes smart. Here
we have two insights, i.e., Understandings E and X. Computer scientists have been
able to rigorously define the concept of algorithms and have developed many types
of smart algorithms. We will discuss several types, including divide-and-conquer
and dynamic programming. Computer scientists are also able to rigorously define
and analyze the time complexity and space complexity of many computational
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Table 1.3 Execution time (seconds) of four programs for computing Fibonacci numbers F(n)

n fib.go fib.dp.go fib.dp.big.go fib.matrix.go
50 725 0.059 0.019 0.000012
500 Error Error 0.026 0.000022
5,000,000 Error Error 102 4.13
1,000,000,000 Error Error Killed after 2 days 187,160

problems and their algorithms. We will discuss the method of asymptotic analysis,
utilizing the famous big-O notation and its cousins. We will also illustrate the
famous problem of "P vs. NP" using examples, which is one of the seven Millen-
nium Prize problems listed by Clay Mathematics Institute.

Systems thinking involves how to design practical systems for computational
processes. A computing system may be a general-purpose computer like a student’s
laptop computer, or a specific computer application system such as WeChat. Com-
puter science has progressed far from designing a system in arbitrary, ad hoc ways
into more advanced ways. The essence of building a system is to use abstractions
(Understanding A) to construct the system from modules (Understanding M), such
that computational processes seamlessly transition from one step to the next step on
the built system (Understanding S). We have millions of computer applications on
billions of computer systems today. They are all supported by a small number of
carefully crafted systems abstractions. We will discuss fundamental data abstractions
and control abstractions in Chap. 5.

We use an example below to illustrate the objectives of logic thinking, algorith-
mic thinking, and systems thinking. The details will be discussed in Chaps. 3-5.
Here we only need to run the programs and contrast their behaviors, to understand
what is meant when we say logic thinking makes computational processes correct,
algorithmic thinking makes them smart, and systems thinking makes them practical.
It helps to hand out in class the involved programs fib.go, fib.dp.go, fib.dp.big.go,
and fib.matrix.go.

Example 1.6. Fibonacci Computing in a Correct, Smart, and Practical Way
New students to computer science often have the implicit assumption that when the
input data and the algorithm are correct, the program execution should successfully
produce the correct result. The reality is more nuanced.

Let us compute F(n) by executing the four programs fib.go, fib.dp.go, fib.dp.big.
g0, and fib.matrix.go, for n = 50, 500, 5000000, and 1000000000, respectively. The
behaviors of these programs are summarized in Table 1.3. Note that we have four
versions of each program corresponding to the four input values of n. Thus, fib.
dp-500.go is fib.dp.go when the value for 7 is set to 500.

The first program fib.go uses a straightforward recursive method. It is terribly
slow (not smart), produces wrong results starting with n = 93 (not correct), and can
only be used when n is small (not practical).
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The second program fib.dp.go has the same incorrect and impractical issues as the
fib.go program. However, it is smarter by using a dynamic programming algorithm.
For n = 500, it takes less than a second to compute F(500).

> go run fib.dp-500.go
F(500)=2171430676560690477
>

Compare this to the F(500) result we obtain by running fib.binet-500.go in
Example 1.3, we see that running fib.dp-500.go generates a wrong output.

F(500)=2171430676560690477 by fib.dp-500.go
F(500)=1.3942322456169767e+104 Dby fib.binet-500.go

It turns out that fib.dp.go computes correct Fibonacci numbers only up to F(92).
For F(93), it generates a negative value: —6246583658587674878, an obviously
incorrect result. The reason is that the 64-bit integer data type used in fib.dp.go is too
small to hold F(93)= 12200160415121876738, which is larger than the largest
64-bit integer 2%%-1, or 9223372036854775807. The program has an overflow bug.

The fib.dp.big.go program fixes this overflow bug by using a data type called big.
Int, allowing integers of arbitrarily word length, i.e., number of bits. We can
comfortably compute not only F(500), but also F(5000000). The latter finishes in
102 s. Its result 7108285972. ..3849453125 has over 1 million digits.

When computing F(1000000000), i.e., n = 1 billion, fib.dp.big.go may run into a
number of problems, such as “not enough memory”. Even with enough memory, the
program runs for two whole days without stopping, and has to be killed. We don’t
know how long it will execute to produce a result. The program is judged not
practical for computing F(1000000000).

The last program fib.matrix.go optimizes further by using a “matrix exponentia-
tion by doubling” algorithm. It takes 187160 s, or a little more than 3 h, to produce
the result for F(1000000000), which is an integer with over 200 million decimal
digits. The dominant part of the execution time is spent on conversion from the
binary format result to the decimal format result, before printing. In any event, we
finally have a program fib.matrix.go that is correct, smart, and practical, for com-
puting Fibonacci numbers F(n) up to n = 1 billion.

The source code of all four programs can be found in Appendix 3.

1.2.3 A Research Viewpoint of Computer Science

To stimulate the students’ curiosity and imagination, we discuss a viewpoint from
the computer science research community. In 2004, the National Research Council
of USA published a report, (called the US Academies Report in this book), which
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Table 1.4 Concepts of this book compared to those in the US Academies Report

US Academies concepts

Concepts discussed in this book

Abstract computer

Turing machine, automata

Real computer

Laptop computer, WWW

Computer applications

Outcomes of the four projects, programming exercises

Symbol manipulation

Digital symbols from integer, character, image, to
programs

Abstractions

Multiple abstractions, from circuit level to application
level

Algorithms

Divide and conquer, dynamic programming

Artificial constructs

Students Computer for Quicksort

Exponential growth

P vs. NP, wonder of exponentiation

Fundamental limits

Turing computability, Godel’s incompleteness
theorems

Action associated with human
intelligence

Reasoning by Boolean logic

summarized the fundamentals of computer science, including the essential character
and salient characteristics, from researchers’ viewpoint. These fundamental concepts
are listed in Box 1.2.

It turns out that this textbook covers most essential character and salient charac-
teristics from the US Academies Report, as shown in Table 1.4. Furthermore, more
than half of knowledge units are presented in such way that students are able to pass
Knuth’s Test.

Knuth’s Test: “The ultimate test of whether I understand something is if I can explain it to a
computer. . .. In most of life, you can bluff, but not with computers.”

Such knowledge units need to be learned in a mind-active, hands-on way. Simple
memorization is not enough. We call such knowledge units UKA units, where UKA
stands for Unity of Knowledge and Action. This pedagogic methodology of Unity of
Knowledge-Action (#1{T&—) was borrowed from Wang Yangming (F-[HHH,
1472-1529), a Chinese educator from the Ming Dynasty. An essence of this
methodology is to learn knowledge with mind-active, hands-on actions.

Box 1.2. Essential Character of Computer Science: A Research
Viewpoint
Computer science is the study of computers and what they can do: the inherent
power and limitations of abstract computers, the design and characteristics of
real computers, and the innumerable applications of computers to solving
problems.

Computer science research has the following salient characteristics:

(continued)
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Box 1.2 (continued)

o Involves symbols and their manipulation.

* Involves the creation and manipulation of abstractions.

* Creates and studies algorithms.

» Creates artificial constructs, notably those unlimited by physical laws.

» Exploits and addresses exponential growth.

» Seeks the fundamental limits on what can be computed.

* Focuses on the complex, analytic, rational action associated with human
intelligence.

1.3 Relation of Computer Science to Society

It helps understand computational thinking by looking at how computer science is
related to the human society and our civilizations. Students probably have an
intuitive feeling that computing is already everywhere. But how much? And why?
We need to learn some basic facts and hypotheses:

* Computational thinking already permeates our civilizations. Its pervasiveness and
fundamental importance are on par with capability of doing basic reading,
writing, and arithmetic.

e There are fundamental reasons why computing is everywhere. Scholars have
proposed several interesting hypotheses.

* Computer science is an attractive field, not just due to societal needs, but also
because it is cool, exhibiting wonders and persuasions basic to our modern
civilizations.

1.3.1 Computer Science Supports Information Society

Obviously, computing is already ubiquitous. A fact is that billions of people use
smartphones to access Internet every day. By the statistics of ITU (the International
Telecommunications Union), at the end of 2019, there were nearly 4 billion Internet
users worldwide, penetrating over 51% of the global population.

An interesting question is: What’s the age of the oldest computer user? An answer
is 113 years old. In 2014, a lady in USA, who was born in 1900, had to lie about her
age to sign on and use Facebook, as the Facebook sign-up page set the earliest birth
year to 1905.

Although a lot of people have heard of “we are in the information age”, fewer
people appreciate how wide and deep the permeation is, still fewer people can
explain why. We provide four essential facts and four hypotheses below.



20 1 Overview of Computer Science

Table 1.5 Digital economy data of 11 countries in 2016, in US$ Trillion

Country Digital Economy Size Percentage of GDP
United States 10.83 58.3%
China 3.40 30.3%
Japan 2.29 46.4%
Germany 2.06 59.3%
United Kingdom 1.54 58.6%
France 0.96 39.0%
South Korea 0.61 43.4%
India 0.40 17.8%
Brazil 0.38 20.9%
Russia 0.22 17.2%
Indonesia 0.10 11.0%

First fact: computer science directly supports the information technology
(IT) industry. The IT industry provides and sells computer and network hardware
products, software products, and services. The industry (producers) and the IT users
(consumers) together form the IT market. The worldwide IT market had grown
significantly, from only millions of US dollars in 1950s, billions in 1960s, to over
one trillion dollars in year 2000, and 2 trillion dollars in year 2013. Today, market
research firms such as IDC and Gartner use a larger metric, called the information
and communication technology (ICT) spending, to measure the market size when
the telecommunication sector is added to the market. In 2019, the worldwide ICT
market is about US$3.7~5 trillion, by different tracking methods.

Second fact: computer science supports digital economy. Economists have
observed a problem with the above measurement method of the IT or ICT industry:
the revenue of many famous IT companies are not included in the above market data,
because they sell little computer, network, telecommunication hardware, software,
and services. These companies include Google, Facebook, Tencent, Baidu, Alibaba,
etc. More than 90% of Google and Facebook’s income are from advertising. As such
they are advertising companies, not IT ones.

To better reflect the impact of ICT to the economy, economists established a new
term, called digital economy. The definition and measurement methods of digital
economy have not yet converged and stabilized. A 2017 study by Huawei and
Oxford Economics utilized global data over three decades, and estimated that the
global digital economy is worth 11.5 trillion US dollars. The top three digital
economies are USA ($3.4 trillion), Europe ($2.9 trillion), and China ($1.5 trillion).
The report observed that the world’s digital economy grew two and a half times
faster than global gross domestic product (GDP) over the past 15 years (2001-2016),
almost doubling in size since the year 2000.

A group of Chinese digital economists, called China Info 100, published a study
in 2018, which went one step further to broaden the scope of digital economy.
Digital economy is divided into five sectors:
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+ Foundational digital economy (i.e., traditional ICT, E:RfiZI(E E £2%%),
 Productivity-enhancing digital economy (R{ZHIE E425%),

» Convergence digital economy (gli-&HI(Z B L2T57),

» Emergence digital economy (Hr4ERI(E B 44757), and

 Welfare digital economy (f&FBI(Z E£455).

The sum of all five sectors is the size of the digital economy. The 2016 numbers
estimated by this report are shown in Table 1.5.

Third fact: computer science supports information society. Human civilizations
have seen three main forms of society: the agriculture society, the industry society,
and now the information society. Computer science does not just impact technology
and economy, but also plays a central role in information society: a new megatrend
and long-term phase of human civilization development. As evidence, the United
Nations World Summit on the Information Society produced a document in
2003-2005, stating the following principle: “to build a people-centred, inclusive
and development-oriented Information Society, where everyone can create, access,
utilize and share information and knowledge, enabling individuals, communities and
peoples to achieve their full potential in promoting their sustainable development
and improving their quality of life, premised on the purposes and principles of the
Charter of the United Nations and respecting fully and upholding the Universal
Declaration of Human Rights.”

The fourth fact is a surprising one regarding human resources. Although billions
of people use IT, the community of IT professionals is not large. Dr. David Grier, a
former President of the IEEE Computer Society, defines IT professionals as people
who have earned a bachelor degree and work in research, education, development,
management and services of computing knowledge, products and services. He
estimates that there are only about 3~10 million IT professionals worldwide. Let
us take a middle number, say 7 million. That means there is roughly one IT
professional per one thousand people of the world’s population. With the increasing
demand of information society, it is no wonder that we see shortage of IT pro-
fessionals in job market.

Now let us discuss the four hypotheses. They all try to answer the question: Why
does computer science permeate our civilizations so widely and deeply? There are
many explanations. We summarize four hypotheses in Box 1.3.

Chomsky’s digital infinity principle is due to Noam Chomsky, an American
linguist. The idea is also expressed as “discrete infinity” and “the infinite use of
finite means”, and can be traced back to Galileo. In essence, it says that that all
human languages, no matter of which application domain or academic discipline,
follow a simple logical principle: a limited set of digits are combined to produce an
infinite range of potentially meaningful expressions. In other words, problems and
knowledge in any domain can be expressed by the professional language of that
domain. Any domain language can be expressed by digital symbols, thus amenable
to computer processing.

Karp’s computational lens thesis is due to Richard Karp, an American computer
scientist. We can understand Nature and human Society better through the
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computational lens. Why? Because Nature computes. Society computes. Many
processes in Nature and human Society, traditionally studied in physical sciences,
life sciences, or social sciences, are also computational processes. These processes
are still physical processes, chemical processes, biological processes, psychological
processes, business processes, social processes, etc. But viewing them as computa-
tional processes can bring in new perspectives and new value.

Babayan’s gold metaphor is an observation made by Boris Babayan, a Russian
computer scientist, in the HPC-Asia Conference in Beijing in the year 2000.
Computing speed is like gold, a hard currency that can be exchanged for anything,
be it new functionality, quality, cost, or user experience of products and services.

Boutang’s bees metaphor is by Yann Moulier Boutang, a French economist. Why
does ICT impact a much larger digital economy? We can liken ICT to bees. From an
economic viewpoint, bees generate two outputs of value. The direct output is honey.
The indirect output (economic externality) is pollination. Professor Boutang esti-
mated that pollination has 28—373 times more economic value than honey. Likewise,
the direct output of ICT is measured as the ICT market (about $3.4~4.3 trillion in
2016). The indirect output is digital economy, which ICT enables and pollinates, and
is multiple times larger (about $11.5~24 trillion in 2016).

Box 1.3. Why Computer Science Permeates Our Civilizations
Chomsky’s digital infinity principle: A finite set of digital symbols can be
combined to produce infinite expressions in many domain languages.

Karp’s computational lens thesis: Many processes in Nature and human
Society are also computational processes. Nature computes. Society computes.
We can understand Nature and Society better through the computational lens.

Babayan’s gold metaphor: Computing speed is like gold, a hard currency
that can be exchanged for anything.

Boutang’s bees metaphor:ICT is like bees, producing two types of outputs.
The indirect output (pollination) of bees has economic value that is orders of
magnitude larger than the value of the direct output (honey). Similarly, the
value of digital economy (indirect output) is much larger than that of the ICT
market (direct output).

1.3.2 Computer Science Shows Three Wonders

The history of computer science has shown three wonders that are not often seen in
other disciplines: the wonder of exponentiation, the wonder of simulation, and the
wonder of cyberspace. These technology wonders are continuing, further stimulating
innovations and applications.

Wonder of exponentiation: computing resources grow exponentially with time.
Three such resources are listed in Box 1.4. We have Nordhaus’s law for computer
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Fig. 1.7 Growth trends of computing speed, energy efficiency, and power consumption of the
world’s fastest computers (supercomputers) from 1945 to 2015. Special thanks to Drs. Gordon Bell,
Jonathan Koomey, Dag Spicer and Ed Thelen for providing data for the first three computers

speed, Moore’s law for the number of transistors on a semiconductor microchip, and
Keck’s law for communication bandwidth of an optical fiber.

It is remarkable that the wonder of exponentiation has existed for decades. It is
even more remarkable that the wonder of exponentiation is likely to continue into
future decades, despite the many seemingly unsurmountable technical obstacles.
Common sense tells us exponential growth is not sustainable. But computing and
communication speeds keep increasing exponentially.

Box 1.4. Laws Showing Wonder of Exponentiation

Nordhaus’s law: computer speed grew exponentially with time, increasing
50% per year from 1945 to 2006. This observation was made in 2007 by
Dr. William Nordhaus, an American economist.

Moore’s law: the number of transistors in a semiconductor chip grows
exponentially with time, doubling every 2 years or so. This observation was
made in 1975 by Dr. Gordon Moore, an American engineer.

Keck’s law: the data transmission rate of a single optical fiber grows
exponentially with time, increasing about 100 times in 10 years. This obser-
vation was made in 2015 by Dr. Donald Keck, an American physicist and
engineer.

Figure 1.7 shows growth trends of computer speed, energy efficiency (speed/
energy), and power consumption data of the world’s fastest computers from 1945 to
2015. We had a nice run for 60 years. Computer speed increased over a hundred
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trillion times. But recently we run into trouble: the energy efficiency did not improve
as fast as speed anymore. Improving energy efficiency has become a top priority in
computing system design.

A recent progress is domain-specific computing. If it is difficult for general-
purpose computing to improve exponentially, can we increase speed and energy
efficiency by focusing on a specific domain of computational processes? An exam-
ple is the DianNao family of processors for deep learning workloads, which signif-
icantly improved the energy efficiency (purple box in Fig. 1.7).

The opposite to the wonder of exponentiation is the curse of exponentiation:
many problems and algorithms have exponential complexity. But this challenge also
serves as the source of many interesting researches and innovations. A case in point
is protein folding, also called protein structure prediction. The problem is to com-
putationally fold a protein into its three-dimensional structure. The brute-force
approach needs 3" operations, where n is size of the problem (usually n =
300~600). Now 3°% ~ 10'* is a lot of operations. Computer scientists have been
trying to find better algorithms that need much fewer operations, e.g., 1.6" or even n’,
where k is a small constant. A recent progress is made by AlphaFold in 2020.

Wonder of Simulation: computer simulation provides a third paradigm for
scientific enquiry, beyond theory and experiments. Simulation is to mimic physical
or social processes by executing computer programs. The first computer simulation,
also called computer experiment, was proposed and conducted in 1953 by physicists
Enrico Fermi, John Pasta, and Stanislaw Ulam, to partially solve a physics problem
later known as “the Fermi-Pasta-Ulam paradox”. In doing so they invented “a third
way of doing science. . .helped scientists to see the invisible and imagine the
inconceivable”, as commented by Professor Steven Sttogatz of Cornell University.

Example 1.7. Computer Simulation: Atoms in the Surf

The lecturer can show or ask the students to play with the video “Atoms in the Surf”
in Supplementary Material. It shows how a supercomputer was used to simulate the
collective motions of 9 billion aluminum and copper atoms, to reproduce a macro
phenomenon known as the Kelvin-Helmbholtz Instability.

The simulation begins with laminar flow such that the aluminum and the copper
layers are heated to a temperature of 2000 K, and the relative velocity of the two
layers is 2000 m/s. Computer simulation enables scientists to see not only the macro
picture of how the aluminum-copper material evolves, but also the micro picture of
each atom’s state, every 2 femtoseconds.

Wonder of Cyberspace. The cyberspace enables designers to build new virtual
things or virtual worlds that may not be possible in the physical world. Besides the
human society and the physical space (Nature and human-built things), computer
science helps create a new space called the cyberspace, consisting of computational
processes running on computers (recall Fig. 1.1). This is a salient feature of computer
science: creates artificial constructs, notably unlimited by physical laws (recall Box
1.2). Real examples abound, such as the following.
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Can we build a shopping mall hosting a million vendors? This is difficult to do in
the physical world, but is already a reality in cyberspace. An example is the
electronic commerce services provided by the company Alibaba Group, which
host over ten million vendors through its Tmall and Taobao platforms in year 2020.

Can we build a bookstore holding a billion books? Again, we can, but in
cyberspace. Think of Amazon.com. We can also build a library in cyberspace,
where the collections are so large that we would need a thousand-floor library to
hold the books in the physical world.

Sometimes, cyberspace works together with human society and physical world to
create a Human-Cyber-Physical ternary computing system. In April 2019, scientists
published a research paper containing the first photographs of a blackhole. The
blackhole is 55 million light years away from the Earth. To take a photograph of it,
we need a telescope as big as our planet. Scientists utilized multiple physical
telescopes in several continents, to form an Earth-diameter virtual telescope. Imag-
ing data were captured in April 5-11 2017 by these physical telescopes and stored in
hard disks, which were then shipped to supercomputers for data correlation and
reduction. These computation and post processing took 2 years, before the images of
this blackhole were published in April 2019.

1.3.3 Computer Science Has Three Persuasions

Computing has a long history. But modern computer science is quite young. There is
no universally agreed birthdate of modern computer science. Some scholars put the
birth year to be 1936, when Alan Turing published his seminal paper on comput-
ability. Some choose 1945, when the first electronic digital computer, ENIAC, was
built. Some would say 1962, when the first Department of Computer Science was
established at Purdue University.

Although so young, computer science has grown into a rich field with many
interesting problems, scientific discoveries, and engineering techniques, which com-
bined produce wide and deep societal impact. A downside of this richness is that
there are too many buzzwords and even hypes associated with IT or ICT, bewilder-
ing to new students of computer science.

The reality is that at its core, computer science has a number of basic persuasions
that are relatively stable. What changes is the scope, refinement, manifestation, and
embodiment of these basic persuasions or visions. Jim Gray in 1999 noted three such
fundamental visions. We slightly revise his viewpoints and call the three visions as
problems: Babbage’s problem, Bush’s problem and Turing’s problem, to emphasize
that they are fundamental problems worthy of continued study. These problems are
summarized in Box 1.5.

Babbage’s problem: How to build efficient, programmable computers?

Here Babbage is Charles Babbage, a British computer scientist and professor at
Cambridge University. His original vision was to build a programmable computer
with information storage that could compute much faster than humans. In 1883,
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Fig. 1.8 A server example: Sugon Nebulae supercomputer hosted in a machine room

Babbage proposed the design of a mechanical digital computer called Analytic
Engine. Although not built, this is considered the first design of a general-purpose
digital computer capable of automatic execution. Ada Lovelace, who wrote a
program for this computer to compute Bernoulli numbers, is generally recognized
as the first computer programmer.

Box 1.5. Computer Science Has Three Persuasions

Babbage’s problem: How to build computers? More specifically, how to
build efficient, programmable computers? Efficiency may mean degree of
automation, computational speed, or energy efficiency (computational speed
per Watt).

Bush’s problem: How to use computers? More specifically, how to use
computers conveniently and effectively in solving problems? This calls for
new conceptions on how humans, computers and information interact.

Turing’s problem: How to make computers intelligent? More specifically,
how to make computing systems intelligent? Here intelligence generally refers
to approaching intelligent behaviors akin to humans.

Today, Babbage’s original vision is already realized. We have in fact expanded
his vision significantly. Three types of computers exist:

* Client-side computers. These are computers most familiar to us, as humans
(clients) directly use them. Examples include personal computers (PCs) such as
desktop computers and laptop computers, and mobile devices such as
smartphones and various smart pads.

¢ Server-side computers. They are also simply called servers, often hosted in
glassed-off machine rooms or Internet datacenters. Users do not directly see
these computers, but indirectly use them through client devices. Examples
include on-premise servers in a company, cloud computing servers hosted in
Internet datacenters, and supercomputers. An example is shown in Fig. 1.8.
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* Embedded computers. These are computers embedded (hidden) in other sys-
tems. People do not see a computer, but see a non-computer system, such as a
microwave oven, a refrigerator, a car, or a pair of shoes.

Dr. Gordon Bell offers a finer classification of computers from the historical
perspective. His insight is based on observation of several decades, and becomes
known as Bell’s law: Computers develop by following three design styles, to
generate a new computer class roughly every 10 years. The three design styles are:
(1) develop the most capable computers with price as a secondary consideration;
(2) improve the performance but maintain a constant price; (3) reduce the price as
much as possible to produce a new “minimal-priced computer”. About a dozen
computer classes formed in the six decades from 1950 to 2007. Ten are listed below.

* Server-side computers hosted in on-premise machine rooms or datacenters

1. Supercomputers, the most capable computers

2. Mainframes, such as IBM S360

3. Minicomputers, such as DEC PDP-11

4. Clusters (systems of interconnected computers), such as IBM SP2

* Client-side computers directed used by humans

5. Workstation, with graphics processing and display capability
6. Personal computers (desktop PC), such as Apple 2
7. Portable computers, such as laptop computers
8. Dedicated personal devices, such as a game device, a digital camera
9. Smartphone, such as Apple iPhones
10. Wearable devices, such as a smart watch

There are already billions of computers of various classes worldwide. Many in the
IT community believe that this is still only the beginning. By 2040, there may be
trillions of computers worldwide. Most of them will be smart things that interact with
the physical world, also known as Internet of Things (IoT) devices. Research
opportunities abound for new classes of computers, both server-side and client-side.

Bush’s problem: How to use computers effectively?

Bush here refers Vannevar Bush, an American engineer and an MIT professor.
He proposed a vision called “Memex” in an influential article “As We May Think”
published in 1945, and revisited 20 years later in another article “Memex Revisited”
in 1965. Memex is rich concept including at least two characteristics: (1) every
scientist should have a personal computer that stores all human knowledge; and
(2) the scientist can easily access information and knowledge he needs, by associ-
ating one scientific record to another record. This association concept is called
hypertext today and appears in technology such as the World Wide Web.

In essence, Bush urges us to study and revisit the relationship between thinking
man and the sum of human knowledge, beyond the mechanic relationship between a
user and his computer device. From a more practical perspective, Bush’s problem



28 1 Overview of Computer Science

directs our attention to the usage mode of computing systems. A usage mode
consists of the following considerations:

* The intended user community, e.g., scientists in Bush’s Memex example.

¢ The organization style of information (and knowledge), e.g., hyperlinked records
in Bush’s Memex example.

* The style of human-computer interaction, e.g., interactive read, write, and select
by following hyperlinks in Bush’s Memex example.

Usage modes visibly impact society. Widespread adoption of a usage mode often
signifies a new computing market. We have made great strides on realizing Bush’s
vision. From the human-computer interaction viewpoint, we have seen the following
usage modes in the 70-year history of modern computer science.

» Batch processing mode. A user submits a computational job (including program
and data) to the computer, and then waits for seconds, hours, days, or months
before the computer returns the result.

* Interactive computing mode. A user interacts with the computer instantly. For
instance, when entering 3000 words to form a file on a PC, the user sees instant
screen output of each entered character, without having to wait for all 3000 words
having been entered and processed in a batch processing way.

¢ Personal computing mode. Early computers, accessed via either the batch or the
interactive modes, are shared among multiple users. A personal computer (PC) is
dedicated to a single user’s usage.

¢ GUI mode. Early computers are accessed via a character interface. Later com-
puters provide graphic user interface (GUI).

e Multimedia mode. The GUI mode is extended to include not only graphics, but
also multiple media types such as images, audio and video.

* Portable computing mode. Now we can carry a computer around, in a bag, in our
pocket, etc. An example is a laptop computer.

* Network computing mode. Now we can access computing resources via com-
puter networks, e.g., local area network, the Internet, or the World Wide Web. An
important network computing mode is called cloud computing, where many
resources are located in the server side (in the cloud datacenters), and accessed
through the network via client-side devices.

¢ Mobile Internet mode. This mode combines the portable and the network modes.
An obvious example is to use WeChat on a smartphone.

Fundamentally, Bush’s problem is about how to best connect people, computers,
and information. This persuasion is continuing and new research opportunities
constantly appear, especially with respect to the trend of Human-Cyber-Physical
ternary computing systems. A concrete example is research in touchless interaction,
which upends traditional ways to use computers by touch (via keyboard, video
display and mouse) in a PC, or by touchscreen in a smartphone.

Turing’s problem: How to make computing systems intelligent.

Here Turing is Alan Turing, a British computer scientist and a founding father of
modern computer science. Turing’s problem can be rephrased as “how to make
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computer application systems intelligent”, emphasizing the intelligent applications
of computers. Broadly speaking, there are three types of computer applications.

* The first type is scientific computing applications, mainly for scientists and
engineers. Their main workloads are to solve equations, to do computer simula-
tions, and to process scientific data.

* The second type is enterprise computing applications, mainly for organizations
such as companies, government agencies, and not-for-profit institutions. The
workloads include business workflows, transaction processing, data analytics,
decision support, etc.

e The third type is consumer computing applications, for individual consumer
users (the masses). Enterprise computing is also called business computing. This
is why the students may have heard phases such as “to B” (products or services
for business) and “to C” (products or services for consumers), or even B2B, B2C,
C2C, and C2B.

Among his fruitful research results, Alan Turing made two fundamental contri-
butions to computer science. In 1936, Turing rigorously defined the concept of
computability. In 1950, Turing proposed a test for machine intelligence and argued
that computer applications could eventually become intelligent.

From a practical application’s viewpoint, Turing’s first paper shows that any
computable problem, be it a scientific computing problem, a business computing
problem, or a consumer computing problem, can be solved by computer applica-
tions. Here computable problems are precisely defined as computable numbers
produced by a precisely defined computer, later called the Turing machine. Any
real number, such as any Fibonacci number or the circular constant &, is computable
if its decimal digits can be written down by a Turing machine automatically in a
sequence of step-by-step elementary operations. Turing also shows that there are
problems not computable. An example is the Entscheidungsproblem (German for
“decision problem”), which is a fundamental mathematics problem formulated in
1928 by David Hilbert and Wilhelm Ackermann. It asks: is there an algorithm to
decide whether a statement is a theorem in a given set of axioms? Turing’s paper
gave a negative answer.

Turing’s second paper went further: not only computable problems are solvable
by computer applications, but also some of these applications can be as intelligent as
humans. Turing did not offer a proof, but presented an interesting argument. He
proposed a test, later called the Turing Test, to show that a computer is intelligent if
a human observer cannot distinguish the computer from a human player in an
Imitation Game. There are three parties (two humans and a computer) in this
game. A human interrogator C asks questions of two players A and B in another
room, to determine whether A or B is a computer. The computer passes the Turing
test if “[the] average interrogator would not have more than 70 per cent chance of
making the right identification after five minutes of questioning”.

Seventy years have passed since Turing’s 1950 paper, and we have made
significant progress regarding Turing’s problem. Many computer application sys-
tems show some intelligent behavior akin to humans. Computers beat human players
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in many games, such as Chess, Go, Poker, and DOTA. Computer applications in
pattern recognition, language translation, autonomous vehicles, robotics, and
machine learning are already in practical use. This subfield of computer science is
called artificial intelligence (Al) and has attracted much attention.

1.3.4 Computational Thinking Is a Symphony

We have briefly discussed computer science and computational thinking. A set of
concepts have already emerged: encoding of domain problems into cyberspace,
computational process as digital symbol manipulation by a sequence of step-by-
step elementary operations, the ABC features without, the eight understandings
within (Acu-Exams), three wonders, and three persuasions. These multitudes of
concepts reflect the richness of the field, but may be bewildering to new students.
A key to handle this richness and complexity is to view computer science as one
thing: a symphony. It is not simply a pile of those particularities, but a synergy
of them.

The richness is a fact of the field. Different scholars voiced different conceptions
of computer science and computational thinking. Three examples follow.

* Professor Georg Gottlob, of Oxford University, believes that computer science is
the continuation of logic by other means, analogous to Clausewitz’s saying that
war is the continuation of politics by other means.

» Professor Richard Karp, of the University of California at Berkeley, promotes the
concept of computational lens (also known as algorithmic lens), emphasizing
solving scientific and societal problems through the lens of algorithms.

* Dr. Joseph Sifakis, of the French National Center for Scientific Research, advo-
cates system design science as a basic goal of the computer science field.

These three different viewpoints offer different perspectives on the same thing.
Computational thinking is a synergy of all of the concepts above. We call this
principle Yang Xiong’s Principle of Harmony (37#f#11%J5IE), as the Chinese
scholar Yang Xiong (53 BCE-18 CE) presented a similar principle in around year
2 BCE, in his work The Canon of Supreme Mystery (K Z £%), a classic of 81 verses
on creativity. Professor Michael Nylan produced an English translation. Yang Xiong
invented a ternary symbol system (—, ==, **). A verse is called a head (&).

Box 1.6 shows part of the verse named Cha (Z,, ternary symbol =), translated
roughly as diversity or divergence.
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Box 1.6. Computer Science Is a Symphony
(KxB-£H) - = wHEE DEHS

Head Cha (Diversity) =:: The way emerges from the multitude of harmonies, where
things diverge in their appearances.

Computer science is like a musical symphony. Many instruments produce
different sounds, but all instruments play the same music. Each instrument
offers its distinct contribution. The diversity of their differences creates a
harmonic whole of the symphony. Logic thinking, algorithmic thinking and
systems thinking together produce the totality of computational process, that is
correct, smart, and practical.

1.4 Exercises

For each exercise, select all correct answers. A selection including all and only
correct answers receives full score. A selection including one or more wrong
answers receives 0 score, but no penalty.

1. Refer to Fig. 1.1.

(a) The domain problem in the target domain must be a mathematic problem.
Problems in other domains must be first encoded into mathematical prob-
lems, before computer science can play a role in problem solving.

(b) The cyberspace consists of computational processes executing on computer
systems. By this definition, the ancient Egyptian civilization did not have
cyberspace, since there were no computers at that time.

(c) By the above definition of cyberspace, the ancient Egyptian civilization DID
have cyberspace, since ancient Egyptians calculated tax based on flood level
data of the Nile river measured by nilometers. The computational process
(tax calculation) was executed by computers in the forms of tax officials,
nilometers and possibly other devices.

(d) The cyberspace is the union of the physical space and the human society.

2. A binary digit (one bit) can be used to represent the following entity:

(a) The traffic light colors of Red, Yellow, Green.
(b) The answer to a Yes/No question.

(¢c) The state of an On/Off switch.

(d) The current time displayed on a digital clock.

3. Refer to Example 1.1 and Fig. 1.3.

(a) The algorithm in Fig. 1.3a is a digital symbol, since it denotes the algorithm
to compute F(10), is represented by a number of English characters, and
each English character can be represented by a number of bits.
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(b) The program fib-10.go is a digital symbol, since it denotes a high-level
language program and is representable by a number of bits.

(c) The program fib-10 is a digital symbol, since it denotes a machine code
program and is representable by a number of bits.

(d) The screen output F(10)= 55 in Fig. 1.3c is a digital symbol, since it denotes
the entity of a program’s output and is representable by a number of bits.

(e) The action of a human programmer entering the command “go build fib-10.
g0” is not a digital symbol, since it is not representable by a number of bits.
The string “go build fib-10.go” is a digital symbol, but it is the result of the
action, not the action itself.

. Three types of code are shown in Example 1.1: high-level language program,

binary program, and command (or shell command). How is each of the three
types of code processed by the computer system? Put the correct capital letter in
the parentheses of each line below.

(a) The high-level language program “fib-10.go” is (). X: executed
(b) The binary program “fib-10.go” is (). Y: interpreted
(¢c) The command “go build fib-10.go” is (). Z: compiled

. Refer to Example 1.1. Suppose “F(10)” is changed to “F(50)” in program fib-10.

go. The screen output in Fig. 1.3c should become:

(a) F(10)= 55
(b) F(10)= 12586269025
(c) F(50)= 55
(d) F(50)= 12586269025

. Refer to Example 1.1. Suppose “fibonacci(10)” is changed to “fibonacci(50)” in

program fib-10.go. The screen output in Fig. 1.3c should become:

(a) F(10)= 55
(b) F(10)= 12586269025
(c) F(50)= 55
(d) F(50)= 12586269025

. Refer to Example 1.1. Suppose “// Output F(10)” is changed to *“// Output F(50)”

in program fib-10.go. The screen output in Fig. 1.3c should become:

(a) F(10)= 55
(b) F(10)= 12586269025
(c) F(50)= 55
(d) F(50)= 12586269025

. Refer to Example 1.1. Suppose “10” is changed to “50” in program fib-10.go.

The screen output in Fig. 1.3c should become:

(a) F(10)= 55
(b) F(10)= 12586269025
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(c) F(50)= 55
(d) F(50)= 12586269025

. Refer to Example 1.1. Why do we need the compiler to compile program fib-10.

go into program fib-10?

(a) The compiler checks for compile-time errors in the high-level language
program, such as various syntactic etrors.

(b) The compiler checks for runtime errors.

(c) Program fib-10.go is a machine code program.

(d) The computer only understands and executes a machine code program.

Refer to Example 1.1. The command “go build fib-10.go” looks like a high-level
language statement and seems to directly execute on a computer. Why does this
not contradict to the assertion that “computer only understands machine code”?

(a) A command is not a program, therefore can directly execute on a computer.

(b) A command is a high-level language program and is interpreted into
machine code by a command interpreter called shell. The command seems
to execute directly, because the interpretation is done automatically and
behind the scene.

(c) The command is a short statement, and the computer can understand single
and short high-level language statements.

Why is it much easier for human to understand a high-level language program
than a machine code program?

(a) High-level language programs are written by highly skilled programmers.
(b) High-level language programs execute much faster than machine code.
(c) High-level language programs are shorter than machine code.

(d) A high-level language is similar to a natural language.

Regarding overflow, which of the following statements is correct?

(a) An overflow error occurs when the result value is too large for the bits
available. For instance, the value 9 is too large for a 4-bit integer (overflow),
but not too large for a 4-bit unsigned integer (no overflow).

(b) An overflow error occurs when the absolute value of the result is too large
for the bits available. For instance, the absolute value of —9 is 9=1001,,
which can be held in 4 bits. Thus, —9 does not cause overflow for a 4-bit
integer representation.

(c) Rounding errors (roundoff errors) are a type of overflow errors.

(d) Overflow errors are a type of roundoff errors.

Eight bits are used to represent an integer value. Which will result in overflow?

(a) When the integer is —256.
(b) When the integer is —129.
(c) When the integer is —64.
(d) When the integer is 64.
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(e) When the integer is 129.
(f) When the integer is 256.

Two computers compute 2.0/7.0 and obtain two different results. Why?

(a) An overflow error occurs.

(b) A compilation error occurs.

(c) A roundoff error occurs.

(d) One computer is a human, and he made a mistake calculating 2.0/7.0.

When looking from outside, computational thinking has three features without,
called the ABC features. They are:

(a) Automatic execution

(b) Binary representation

(c) Computational abstraction
(d) Constructive abstraction

Bit-accuracy in a computational process means:

(a) Every operation of the computational process generates a result that is
accurate and precise up to every bit.

(b) The computational process generates a correct integer result.

(c) The computational process generates a final result value that is precise up
one binary digit after the decimal point.

(d) The computational process generates a final result with statistical signifi-
cance, i.e., the p-value less is than 0.05.

When looking inside, computational thinking has eight understandings within,
with an acronym Acu-Exams. They are:

(a) Automatic execution

(b) Correctness and Universality in logic thinking

(c) Effectiveness and Complexity in algorithmic thinking

(d) Abstraction, Modularity and Seamless Transition in systems thinking

The Information Technology (IT) industry provides:

(a) Computer hardware products, such as laptop computers and servers

(b) Network hardware products, such as WIFI routers and network cards

(c) Computer software products, such as operating systems and Web browsers
(d) Internet services, such as search engine and video sharing

ICT refers to the Information and Communication Technology industry. It
provides:

(a) Computer and network hardware products, such as desktop computers and
smartphone devices

(b) Computer software products, such as operating systems and scientific com-
puting software
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(c) Internet services, such as search engine and video sharing
(d) Telecommunication services, such as telephone services and Internet con-
nection services

The worldwide ICT spending in 2019 was about:

(a) 40 billion US dollars

(b) 400 billion US dollars

(c) 4000 billion US dollars, or 4 trillion dollars
(d) 40 trillion US dollars

The worldwide population is about 7.8 billion people in year 2019. How many
of them were estimated as IT professionals?

(a) 780 thousand, that is, one IT professional serving 10000 people
(b) 1 million, that is, one IT professional serving 7800 people

(c) 7.8 million, that is, one IT professional serving 1000 people

(d) 78 million, that is, one IT professional serving 100 people

About how much percentage of the worldwide population are computing pro-
fessionals (also known as IT professionals)?

(a) 0.01%
(b) 0.1%
©) 1%
) 10%

The following statements regard the four hypotheses explaining the impact of
computer science.

(a) When Richard Karp said Nature computes and Society computes, he meant
that many processes in natural sciences and social sciences can be viewed as
computational processes.

(b) When Richard Karp presented the computational lens thesis, he meant that
he can turn his smartphone’s camera into a telescope to see stars.

(c) When Boris Babayan proposed his gold metaphor, he meant that one can
sell one’s computer for gold.

(d) When Yann Moulier Boutang proposed his bees metaphor, he meant that
ICT produces direct economic value (like bees producing honey), as well as
indirect value (like bees pollinating), and the indirect value is much larger
than the direct value.

The following explains why computer science has wide impact.

(a) Computer science is useful for many fields, because there are infinite many
computer programs. This is known as the Chomsky digital infinity principle.

(b) Computer science is useful for many fields, because many processes in those
fields can be viewed as computational processes, i.e., processes of informa-
tion transformation. This is known as Karp’s computational lens thesis.
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(c) Wires in microchips of computers should be made of gold, to resist corro-
sion and provide reliability. This is known as Babayan’s gold metaphor.

(d) ICT produces indirect economic value much larger than its direct value. This
is analogous to bees producing honey and doing pollination. The indirect
value (pollination) is much larger than the direct value (honey). This is
known as Boutang’s bees metaphor.

According to Boutang’s bees metaphor, the worldwide digital economy has a
much large value than the worldwide ICT spending number. The worldwide
digital economy in 2016 was valued at about:

(a) 150 billion US dollars.
(b) 1.5 trillion US dollars.
(c) 15 trillion US dollars.

(d) 150 trillion US dollars

The following statements are about wonder of exponentiation.

(a) Computer speed has increased exponentially with time since 1945.
(b) Computer speed has increased exponentially with time since 1800.
(c) Computer speed will increase exponentially with time till 2045.
(d) Computer speed will increase exponentially with time till 2800.

The following statements are about wonder of simulation.

(a) Computer simulation of car crashes is more economic and less dangerous
than physical tests of car crashes.

(b) Simulated car crash tests have fully replaced physically crashing cars.

(c) Simulated car crash tests can provide insights on the design of the cars.

(d) Simulated car crash tests can help formulate and verify the hypothesis that
drivers with dementia are more likely to experience accidents.

The following statements are about wonder of cyberspace.

(a) All things and processes in the cyberspace also appear in the physical world,
because Nature computes and Society computes.

(b) All things and processes in the cyberspace also appear in the physical world,
because computers can only simulate physical processes governed by
scientific laws.

(c) Things and processes in the cyberspace can be absent in the physical world,
because a tenet of computer science is to creates artificial constructs, notably
those unlimited by physical laws.

(d) The cyberspace can help create virtual things different from traditional
physical things. An example is the Event Horizon Telescope, which is an
Earth-diameter virtual telescope that was used to successfully take photo-
graphs of a blackhole.
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29. The following statements are about Babbage’s Problem.

(a) A laptop computer is a server-side computer.
(b) A laptop computer is a client-side computer.
(c) A laptop computer is an embedded device.
(d) A laptop computer is a computer cluster.

30. The following statements are about Bush’s Problem.

(a) When a user is browsing the Web using a home PC, the user-computer is
working in the batch mode for scientific computing applications.

(b) When a user is browsing the Web using a home PC, the user-computer is
working in the interactive mode for consumer computing applications.

(c) C2C stands for Computer-to-Computer applications.

(d) C2C stands for Consumer-to-Consumer applications.

31. The following statements are about the Turing Test.

(a) The Turing Test is used to test how well a computer can drive an autono-
mous vehicle.

(b) The Turing Test is used to test how well a computer can recognize the object
in a picture, e.g., identifying the object as a cat or a dog.

(c) The Turing Test is used to test whether a computer can beat human in Chess.

(d) The Turing Test is used in a dialogue between a human interrogator and two
interrogated parties (a human and a computer) to see if the interrogator can
correctly tell the computer apart from the human.

32. What does it mean that “computer science is a symphony”?

(a) It means that multiple computers on the Internet can work together in real
time to play Beethoven’s Ninth Symphony.

(b) It means that multiple laptop computers in the same classroom can work
together in real time to play Beethoven’s Ninth Symphony.

(c) It means that computer science is the synergy of logic thinking, algorithmic
thinking and systems thinking.

(d) Designing a computer application system only involves systems thinking, to
make the application system practical. It does not need to involve logic
thinking or algorithmic thinking, which are too theoretical.

1.5 Bibliographic Notes

The chapter quotation is from an interview of Donald Knuth by Quanta Magazine in
February of 2020 [1]. Rusbult’s investment model of relationship can be found in
[2]. Computer science fundamentals are discussed in [3, 4]. Digital economy data
and the principle of information society are presented in [5—7]. The concepts of
Chomsky’s digital infinity, Karp’s computational lens, and Boutang’s bees metaphor
can be found in [8—10]. Historical trends of computing-related metrics are shown in
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[11-15]. A recent progress in high-accuracy protein structure prediction is reported
in [16]. Computer simulation is discussed in [17, 18]. Examples of Human-Cyber-
Physical ternary computing systems are discussed in [19, 20]. Discussions on
Babbage’s problem, Bush’s problem, and Turing’s problem can be found in [21-
26]. Nylan [27] provides an English translation with commentary of X242, The
Canon of Supreme Mystery.
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Chapter 2 ®)
Processes of Digital Symbol Manipulation e

A physical symbol system has the necessary and sufficient
means for general intelligent action.
—Allen Newell and Herbert A. Simon, 1976

Symbols are carriers of human civilizations. Digital symbols are carriers of the
modern human civilizations. Digital symbol manipulation is at the core of computer
science. We discuss several examples of digital symbol manipulation in this chapter,
to show that data are digital symbols, programs are digital symbols, and computer
systems are a platform for digital symbol manipulation.

These examples are (1) binary-decimal number conversion, (2) representing
integers, (3) representing characters, (4) writing simple programs, (5) writing pro-
grams relating character strings to integers, (6) writing programs to compute large
Fibonacci numbers in two methods, recursive and dynamic programming.

These examples assume a von Neumann model of computer, which will also be
introduced with a detailed example of step-by-step execution of instructions, to show
how a computer works.

2.1 Data as Symbols

Many quantities in the physical world have analog values. Such a quantity has
continuous values. They are basically real numbers, but often represented by a finite
number of digits according to the application requirement on precision. For instance,
Fig. 2.1 shows the analog quantity of monthly average high temperature of Beijing in
2019, which have continuous values. This analog quantity of temperature can be
converted into a digital quantity by discretization, i.e., using discrete values shown
in the following table in both binary and decimal formats. There is a question mark
for the seventh month (July), which will be elaborated in an exercise.
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Z. Xu, J. Zhang, Computational Thinking: A Perspective on Computer Science,
https://doi.org/10.1007/978-981-16-3848-0_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3848-0_2&domain=pdf
https://doi.org/10.1007/978-981-16-3848-0_2#DOI

42

2 Processes of Digital Symbol Manipulation

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 2.1 An analog quantity: average high Temperature value in Beijing in year 2019

Month 1 2 3 4 5 6

<
0
N

10 11 12

Temperature | 00011 | 00100 | 01111 | 10011 | 11011 | 11111

°C

2

11101 | 11100 | 10010 | 01001 | 00011

Discretization maps continuous analog values to non-continuous discrete values.

There is no intermediate value between two consecutive discrete values. Discrete
values are also called digital values or digital symbols. Three terms are often used in
computer science regarding digital values: bit, byte, and word.

Bit is the smallest digital symbol that can have a value of O or 1.

Byte is a group of 8 bits. It is the smallest unit used by a typical computer when
storing digital symbols in memory. When a load or store instruction is executed to
access the memory, the computer accesses at least one byte. This is why memory
in most computers are called byte-addressable memory.

Word is a group of bits. It is the smallest unit used by a typical computer when
processing digital symbols (or digital values) in processor. The number of bits in a
word is called the word length of the computer. Modern computers are 64-bit
computers, meaning their word length is 64 bits. Earlier computers have 32-bit,
16-bit, and 8-bit word lengths.

The most fundamental digital symbols are bits, numbers, and characters. This

section discusses three examples to show how to do binary-decimal number con-
version, how to represent integers, and how to represent English characters. The
focus is on representation of these symbols. Representation is the way the bits of a
symbol are laid out when the symbol is stored in the computer memory. Once a



2.1 Data as Symbols 43

symbol is properly represented, manipulation (operations on the symbol) often
becomes obvious and intuitive.

2.1.1 Conversions Between Binary and Decimal Number
Representations

The problem is to convert a number in binary representation to its decimal repre-
sentation, and vice versa. It is helpful to have a table ready showing the
corresponding values of binary and decimal bases, as shown in Table 2.1.

Example 2.1. (110.101), = (?)19
(110.101),=1x2%+1 x2'+0x 2%+ 1 x 2 1 40%x 22+1x23=4+2+0.5+0.125 =
(6.625),0.

Example 2.2. (6.625);9 = (?),
We convert the integer part (6) and the fraction part (0.625) separately. The decimal
value 6.625 is converted into the binary value 110.101.

23 22 71 20 P 22 23 o4 25
8 4 2 1 0.5 0.25 0.125 0.0625 0.03125
1 1 0 1 0 1

Students show different tastes for this binary-decimal conversion problem and
prefer different methods. There is no best conversion algorithm for all students. We
will not formally describe a conversion algorithm. Instead, we use a more intuitive
way of illustrating a conversion algorithm using the specific problem of converting
6.625 into 110.101.

Converting the integer part 6 into binary representation needs three steps. The
conversion algorithm goes as follows. It uses a variable called the remainder.

¢ Initialize the remainder as 6. Look at Table 2.1.

e Start from the column with the largest decimal base that is less than or equal to
6. The matching column is column 4, not column 8 or column 2.

e Work from left to right, one column at a time.

— Try to subtract the decimal base from the remainder, write down the result (1 if
sufficient, O otherwise) and the remainder in parentheses.
— When the remainder is 0, stop.

Table 2.1 Correspondence of binary and decimal bases
74 3 72 71 20 1 72 73 7 25
10000. 1000. 100. 10. 1. 0.1 0.01 0.001 0.0001 0.00001
16 8 4 2 1 0.5 0.25 0.125 0.0625 0.03125
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The binary number of the integer part 6 is 110. Details of the three steps follow.

Step 1: 6-4=2; sufficient, the new remainder is 2, write down 1(2).

72 1 20 P 72 53 54 5

4 2 1 0.5 0.25 0.125 0.0625 0.03125
1)

Step 2: 2-2=0; sufficient, the new remainder is 0, write down 1(0).

2? 2! 20 2! 22 23 24 2°

4 2 1 0.5 0.25 0.125 0.0625 0.03125
1(2) 1(0)

Step 3: As remainder is O, stop. Note that the remaining bit of the integer part, i.e.,
column 1, is empty. This is understood to represent O.

22 2! 20 2! 22 23 24 23
4 2 1 0.5 0.25 0.125 0.0625 0.03125
1) 1 (0) 0

Converting the fraction part 0.625 uses a similar algorithm. It needs four steps.
Initially, let remainder be 0.625. Start from column 0.5 and work from left to

right.
Step 4: 0.625-0.5=0.125; sufficient, the remainder is 0.125, write down 1 (.125).
22 2! 20 27! 22 23 24 2
4 2 1 0.5 0.25 0.125 0.0625 0.03125
1) 1(0) 0 1(.125)

Step 5: 0.125-0.25; insufficient, the remainder is 0.125, write down 0 (.125).

72 1 20 71 72 73 54 55

4 2 1 0.5 0.25 0.125 0.0625 0.03125
1@2) 1(0) 0 1(.125) 0 (.125)

Step 6: 0.125-0.125=0; sufficient, the remainder is 0, write down 1 (0).

72 71 20 o1 72 23 o4 e

4 2 1 0.5 0.25 0.125 0.0625 0.03125
12 1 (0) 0 1(.125) 0 (.125) 1(0)

Step 7: As the remainder is 0, stop. The final result is (6.625),o = (110.101),.

22 Y 20 ol 72 73 o 25
4 2 1 0.5 0.25 0.125 0.0625 0.03125
1 1 0 1 0 1
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Table 2.2 Binary, decimal,
and hexadecimal representa-
tions of natural numbers

45
Binary Decimal Hexadecimal
2%2212° 10'10° 16°
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 [§ 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

Example 2.3. (11.3);9 = (?),
Use the same method to convert 11.3. This is an infinite process, corresponding to a
binary number with an infinitely cyclic fraction. The final result is

(11.3),0 = (1011.010011001

)2.

Note that the largest decimal base less than 11 is 8. The conversion result after the
13th step is shown below.

23 22 2! 20 21 22 23 24 25

8 4 2 1 0.5 0.25 0.125 0.0625 0.03125
13 |03 1(1) 10 [0(3) 1(.05) | 0(.05) 0 (.05) 1 (.01875)
26 97 28 29

0.015625 0.0078125 0.00390625 0.001953125

1 (.003125) 0 (.003125) 0 (.003125) 1 (.001171875)

Equipped with the above conversion method, we can represent all natural num-
bers, i.e., 0 and positive integers, in the binary notation. In addition, we use a base-16
notation called hexadecimal representation, as shown in Table 2.2.

The hexadecimal representation is a base-16 notation, meaning a digit has
16 values, from 0, 1, ... to 15. To avoid confusion, we replace the six 2-digit
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symbols 10, 11, 12, 13, 14, 15 with six 1-digit symbols A, B, C, D, E, F. Note that
hexadecimal digit symbols can also be written in small case: a, b, c, d, e, f. They
represent the same values as A, B, C, D, E, F.

Each hexadecimal digit represents four bits. Converting a binary number to a
hexadecimal number is easy: we simply partition the binary number into 4-bit
groups, starting from the least significant bit, and then convert each 4-bit group
into a hexadecimal digit according to Table 2.2.

For instance, to represent the decimal value 63 in an 8-bit binary representation,
we have 63 = 00111111. Partitioning it into 4-bit groups, we have 0011 1111 =
3F;¢. The hexadecimal representation 3F¢ is sometimes simply written as 3F when
there is no confusion. In computer programs, we often write 0x3F, where 0x denotes
hexadecimal representation. Some computers differentiate capital or small cases,
such that 3F;¢ is written as 0x3f or 0X3F.

Having fewer numbers of digits, the hexadecimal representation is often easier for
humans to understand and use than binary representation.

2.1.2 Representing Integers in Two’s Complement
Representation

The above examples seem to suggest a natural way to represent natural numbers and
integers. If we have n bits, we can precisely represent all 2" natural numbers in the
interval [0, 2"-1], such that binary 0...00 represents decimal 0, binary 0...01
represents 1, and binary 1...1 represents 2"-1. When n==8, we can represent all the
256 natural numbers in the interval [0, 255], where 00000000 = 0, 00000001 =
1,...,and 11111111 = 255. This is called the unsigned integer representation.

How about integers? A straightforward method, called the simple signed integer
representation, is to use the leftmost bit for the sign bit, and the remaining n-1 bits for
the absolute value. Thus, 8 bits are enough to represent integers in the interval [-127,
127], as 27=128. However, this intuitive representation has problems, as the fol-
lowing example shows.

63 = 00111111, 64 = 01000000, (-63) = 10111111, (-64) = 11000000.
63 + 64 = 00111111 + 01000000 = 01111111 = 127 (correct)

(-63) + (-64) = 10111111 + 11000000 = 11111111 = (-127) (correct)
63 +(-63) = 00111111 + 10111111 = 11111110 = (-126) (wrong!)

A smarter representation is called two’s complement representation. Zero and
positive numbers are represented in the usual way. A negative number is represented
by its two’s complement: (1) finding the binary representation of its absolute
number, (2) bit-wise inverting the binary representation, and (3) adding 1 to the
inverted number. The negative integer (-63) is represented as 11000001, because

1. the binary representation of the absolute value of (-63) is 63=00111111,
2. bit-wise inverting 00111111 yields 11000000, and
3. adding 1 yields 11000000+00000001 = 11000001.
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This smarter representation solves the above problem. Let us verify it by redoing
the arithmetic, noting two details when doing addition: (1) the sign bits are treated
the same as the other bits, and (2) the carry over the sign bit is ignored.

63 = 00111111; 64 = 01000000; (-63) = 11000001, (-64) = 11000000
63 + 64 = 00111111 + 01000000 = 01111111 = 127 (correct)

(-63) + (-64) = 11000001 + 11000000 = 10000001 = (-127) (correct)
63 + (-63) = 00111111 + 11000001 = 00000000 = 0 (correct!)

A bit-by-bit process is shown below. Note that the carry bit over the sign bit is
ignored (boldfaced).

63 + (-63) = 00111111 +11000001 =100000000 =00000000, = 049
11000001

The carry bits 11111111

The result bits 100000000 = 00000000, = 05,

2.1.3 Representing English Characters: The ASCII
Characters

Any finite set of symbols can be represented by one or more bits. Any symbols, not
just numbers.

Suppose a symbol set has more than 2" but no more than 2" symbols. A
straightforward method of representation is to use n-bit numbers, 2" of them in
total, to represent the symbol set, such that each n-bit number represents a distinct
symbol of the set.

A basic format for representing English characters is ASCII (American Standard
Code for Information Interchange), which uses one byte (8 bits), as shown in
Fig. 2.2. Actually, only 7 bits (DgDsD4 D;D,DDy) are used to represent characters,
the highest bit (D) is used for other purpose, such as extension or error detection. So
D; is always 0 in Fig. 2.2.

Seven bits have 128 combinations and can represent 128 symbols. Of these
128 combinations, 33 combinations (the first 32 and the last combinations) are
used to represent control characters, such as carriage return, escape, and delete.
The remaining 95 combinations are used to represent “normal” characters in a usual
English text, such as characters in the alphabet (A, ..., Z, a, .. ., z), decimal numbers
(0, ..., 9), various punctuation and other symbols (+, !, @, #, $, %, etc.).

The value of a character in Fig. 2.2 is also called the ASCII encoding of that
character, also known as ASCII code or ASCII value. The value is an 8-bit unsigned
integer value, and could be displayed in binary, decimal, or hexadecimal formats.
Since the leftmost bit is always zero, the value of an ASCII character is between
0 (for the null character NUL) and 127 (for the delete character DEL).
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0000 0001 0010 0011 0100 0101 0110 0111
D3D:2D1Do

0000 @ DLE @ @ P P
0001 SOH  DCI ! 1 A Q a q
0010 STX  DC2 2 B R b r
0011 ETX  DC3  # 3 C S ¢ s
0100 EOT DC4 § 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK  SYN & 6 F \ f v
0111 BEL  ETB 7 G w g w
1000 BS CAN ¢ 8 H X h X
1001 HT EM ) 9 I Y i y
1010 LF SUB  * J z j z
1011 VT ESC  + : K [ k {
1100 FF FS , < L \ 1 |
1101 CR GS - = M ] m }
1110 SO RS . > N A n ~
1111 SI Us / ? 0 o DEL

Fig. 2.2 Representation of ASCII Characters

For instance, from Fig. 2.2, we can see that the ASCII encoding for letter X is
01011000, = 88;(. The ASCII encoding for the plus sign ‘+’ is 00101011, = 43,
The ASCII encoding for escape character ESC is 00011011, = 27,.

The character string “Alan Turing” contains 11 characters, one of which is a space
(SP). This character string’s ASCII encoding is “Alan Turing” = [65, 108, 97, 110,
32,84, 117, 114, 105, 110, 103].

Three ASCII characters need special mention, i.e., null (NUL), space (SP), digit
0. Some students find them confusing, probably because they all intuitively indicate
some forms of emptiness. But they are quite different characters. In particular, note
that the ASCII encoding for digit O is not 0, but 48. The ASCII value O is used for the
null character NUL. We contrast the ASCII encodings for these three characters
below and mark them in Fig. 2.2.

ASCII value for the null character NUL:
00000000, = 049

ASCII value for the space character SP:
00100000, = 324

ASCII value for the digit O character:
00110000, = 484
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2.2 Programs as Symbols

For students new to programming, it helps to write and run a number of simple
programs with increasingly complex structures. Deliberated errors are included in
some programs to show and debug compiling errors and runtime errors.

2.2.1 A Number of Simple Programs

It is common practice to ask students to write their first program to output some form
of “Hello, world!”. Figure 2.3 starts with an even simpler program and then adds
several more programs, some of them containing errors. The point is to familiarize
the students with the edit-compile-execute process.

The null.go program is correct but does nothing. The program hello.go is correct
and outputs hello!. The program hello-1.go contains compiling errors. The screen
output of each program’s compile-execute process is shown below. The “>"" symbol
is the command-line prompt.

>gobuildnull.go ; Compilenull.go into an executable file null
> ./null ; Execute null
> ; The program does nothing and returns to shell
package main // declare main package of the program
func main() { /I declare main function of the program
} // the body of the function is empty
(a)

package main
import "fmt" // import a library package “fmt”
func main() {
fmt.Println("hello!") ~ // which is used here to print out things

}
(b)

package main
func main { } ( /I wrong parentheses are used

)
(©)

Fig. 2.3 Some simple programs. (a) The simplest Go program null.go which is correct but does
nothing. (b) A correct program hello.go which outputs hello! (¢) A wrong program hello-1.go which
produces compiling error
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>gobuildhello.go ; Compile hello.go into an executable file hello

> ./hello ; Execute hello
hello! ; The program outputs hello!
> ; The program finishes and returns to shell

The two steps of the compile-execute process can be combined into one step.

>go run hello.go ; use “run” instead of “build”

hello!

>go run hello-1.go

# command-line-arguments

.\hello-1.g0:2:6: missing function body
.\hello-1.go:2:11: syntax error: unexpected {, expecting (
>

Actually, three parties are involved in executing the above commands and pro-
grams: the human user, the command-line environment of the operating system
called the shell environment, and the rest of the computer. The shell provides a user
interface for the user to enter a command and see the execution result of the
command. The shell also interprets (executes) a command and generates the result
of execution. Recall that commands are also programs.

During these processes, a program needs to do three things besides executing
internal instructions: accepts input, produces output, and produces error output. Now
we encounter a problem: where is the source/destination? Accept input from where?
Where is the produced output sent? Produce error output to which device? Modern
computers have a default answer to these questions, unless specified by the user
otherwise:

e Accept input from the Standard Input device, usually the keyboard device. It is
often denoted by a name such as StdIn, stdIn, or stdin, in programs.

¢ Send output to the Standard Output device, usually the display screen. It is often
denoted by a name such as StdOut, stdOut, or stdout in programs.

* Send error output to the Standard Error device, usually the display screen. It is
often denoted by a name such as StdErr, stdErr, or stderr in programs.

Sometimes, the source/destination object to input or output is a file stored in the
hard disk, but we use a name to refer to the file. We go through the above simple
programs again, paying attention to how the standard input, output, and error output
behave.

>gobuildnull.go ; Shell gets input from StdIn, withfile name null.go
> ; No output sent to StdOut. Afile null sent to disk.

> ./null ; Shell gets input from StdIn, withfile name null
; No output sent to StdOut.
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> ./hello ; Shell gets input from StdIn, with file name hello
hello! ; Program hello sends output "hello!" to StdOut
> ; The program finishes and returns to shell

>gobuild hello-1.go ; Shell gets input from StdIn, with file name
hello-1.go

# command-line-arguments ; Error messages to StdErr

.\hello-1.g0:2:6: missing function body

.\hello-1.go:2:11: syntax error: unexpected {, expecting (

>

We can use the symbol ‘<’ to redirect standard input, and the symbol ‘>’ to
redirect standard output, respectively. For instance, the following command

> ./hello > helloResult
>

sends nothing to StdOut, because the result is redirected to file helloResult.

2.2.2 Programs Relating Character Strings to Integers

We can better understand the most basic digital symbols, i.e., numbers and charac-
ters, by writing three programs: symbols.go, name_to_number-0.go, and
name_to_number.go. The basic digital symbols manifest as simple data types and
their representations, such as integer, array, and character string types, and decimal,
hexadecimal, binary, and character representations. These representations are spec-
ified using different formatting verbs in a fmt.Printf statement.

The first program symbols.go shows these different representations of the same
value 63. The program generates four different screen outputs 63, 0x3F, 111111, and
?’, by using four different formatting verbs %d, %X, %b, and %c, respectively.

Of the four formatting verbs, the character verb %c is the most basic. The reason
is that the display screen only prints out one character at a time. Printing out decimal
value 63 by the %d verb is actually done by using %c twice to output ASCII
characters ‘6’ and ‘3’. The last three fmt.Printf statements each try to implement
the %d verb functionality using only %c by outputting a string of two characters
6 and 3 (Fig. 2.4).

The fmt.Printf("String: %c%c\n",63) statement naively uses two %c verbs for the
two characters 6 and 3. It forgets that 63 is one value. The next statement separates
63 into two values 6 and 3 before printing. It fails because 6 and 3 are the ASCII code
value for control characters ACK and EXT, displayed as =and L, respectively. The
last statement remedies this by adding ‘0, which represents character digit O and has
a value of 48. Thus, 6+'0'=54 and 3+'0'=51, respectively, which are the correct
ASCII code values corresponding to characters 6 and 3.x
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package main

import "fmt"

func main() {
fmt.Printf("Decimal: %d\n",63)
fmt. Printf("Hex: %X\n",63)
fmt.Printf("Binary: %b\n",63)
fmt.Printf("Character: %c\n",63)
fmt.Printf(" String: %c%c\n",63)
fmt.Printf(" String: %c%c\n",6,3)
fmt.Printf(" String: %c%c\n",6+'0",3+'0")

}
(a)
> go run symbols.go
Decimal: 63 ; decimal representation of value 63
Hex: 3F ; hexadecimal representation of value 63
Binary: 111111 ; binary representation of value 63
Character: ? ; ASCII character corresponding to 63
String: ?%!c(MISSING) ; error, 63 is one value, not for two characters
String: — L ; error, output control characters ACK and EXT
String: 63 ; correctly output two characters 6 and 3
>
(b)

Fig. 2.4 Program symbols.go and its output. (a) Program symbols.go. (b) Output by executing
program symbols.go

The second program computes the student code from a student name, represented
as a string of ASCII characters. More specifically, program name_to_number-0.go in
Fig. 2.5 outputs the sum of the ASCII code values of the eleven characters in the
student name string "Alan Turing". Students are suggested to read the material
through to Fig. 2.7, which will make the material easier to understand.

This example introduces four new types of digital symbols: variable, array,
string, and loop. Variables represent those digital symbols the values of which may
change during a program’s execution. In contrast, a constant symbol does not
change its value. Variables should be declared before using. The statement

var name string = "Alan Turing"
declares a variable: its name is name, its data type is string (a byte array), and its
initial value is "Alan Turing". Any digital symbol has these three aspects: name,
type, and value. The above declaration statement can be shortened to

name := "Alan Turing",

which is valid within a code block between { and }.
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package main
import "fmt"
func main() {
var name string = "Alan Turing"
sum :=0 // sum is type int, i.e., 64-bit integer
fori:=0;i<11;i++ { //'1 is type int
sum = sum + int(name([i])
}
fmt.Printf("%d\n", sum)
}

(a)

> go run name_to_number-0.go
1045
>

(®)

Fig. 2.5 Program name_to_number-0.go and its output. (a) Source code of program
name_to_number-0.go. (b) Screen output by executing program name_to_number-0.go

An array is a variable with 0 or more elements of the same data type, as
illustrated in Fig. 2.6. A string variable is an array such that its elements are of
type byte and their values can only be initialized but not altered. The data type byte
is also called uint8, i.e., 8-bit unsigned integer that can have a value from 0 to 255.

The character string “Alan Turing” contains 11 elements, represented in a
computer memory as an array: “Alan Turing” = [65, 108, 97, 110, 32, 84,
117, 114, 105, 110, 103]. As the initial value, this string is assigned to an array
variable called name. The array’s length is 11, the number of the array elements. The
length of array name can be found by calling a system-provided function len(name).

We use namel[i] to specify the i-th element of array name, where i is called the
array index. The index’s value starts from O and increments up to len(name)-1, or
11-1=10. Thus,

name [0] ='A'=65, name[1]='1'=108, name [2]='a'=97,
name [3]='n'=110, name [4] =" '=32, name [5]="'T'=84,
name [6]='u'=117, name [7]='r'=114, name [8]='i'=105, name [9]

='n'=110, name [10]='g'=103.

Note that each array element is a variable of type byte (8-bit unsigned integer). It
can hold the ASCII encoding of a character. In the above string example, name
[0] holds English letter A, which has ASCII encoding 65. We need to pay attention to
name[4], which holds the space character ' ' (SP), with ASCII encoding 32.

Program name_to_number-0.go produces the sum of these eleven numbers, to
output 1045. That is: 65+108+97+110+32+84+117+114+105+110+103 = 1045.
The program does this summation by the following for loop statement:
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array name array length

i \
( |
name = [65 108 97 110 32 84 117114 105110103]
array index ——— >0 1 2 3 4 5 6 7 8 9 10

Fig. 2.6 Illustration of an array variable, called name, after the declaration statement var name
string = "Alan Turing"

fori:=0;i<11; i++ { // 0<1i<11; increment i
sum = sum + int (name [i]) by 1 at each iteration

}

Start with i = 0. Repetitively execute the loop body until i > 11. At each
repetition (called iteration), increment i by 1. This is what i++ means.

The loop body is the code block between { and } of the for loop. Here, the loop
body is the assignment statement sum = sum + int(name[i]), which assigns the
value of the right-side expression sum + int(name[i]) to the left-side variable sum.

In other words, the for loop statement is a shorthand notation for executing the
loop body 11 times, equivalent to the following 11 lines of code:

sum = sum + int (name [0])
sum = sum + int (name[1])
sum = sum + int (name [2])
sum = sum + int (name [3])
sum = sum + int (name [4])
sum = sum + int (name [5])
sum = sum + int (name [6])
sum = sum + int (name [7])
sum = sum + int (name [8])
sum = sum + int (name [9])
sum = sum + int (name [10]

)

This for loop accumulatively adds up the 11 elements of array name, and puts the
result in the integer variable sum. Note that before the for loop, sum is already
initialized to O by the sum = 0 statement, as shown in Fig. 2.5a.

Some students may find the expression sum + int(nameli]) strange. Why not
simply write the expression as sum + name[i]?

The lecturer can deliberately make a mistake here by showing what error will
occur if we use expression sum + name[i]. Two key ideas can be revealed: (1) only
values of the same data type can be added (operated); and (2) if an operation involves
values of different types, a type cast operation can be used to convert a value into the
desired type.

The four values involved in the “sum = sum + int(name[0])” assignment state-
ment are shown in Table 2.3. Before executing the statement, variable sum (right-
side) holds a 64-bit integer value 0, and name[0] holds an 8-bit unsigned integer
value 65. After execution, sum (left-side) holds a 64-bit integer of value 65.
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Table 2.3 Type casting makes an operation on values of different types possible

Value name | Binary representation

sum (right- 0000000000000000000000000000000000000000000000000000000000000000
side)

name[0] 01000001

int(name[0]) | 0000000000000000000000000000000000000000000000000000000001000001
sum (left- 0000000000000000000000000000000000000000000000000000000001000001
side)

In the right-side expression sum + int(name[0]), variable sum is of type int (64-bit
integer), and name[0] is of type byte (8-bit unsigned integer). They cannot be added.
We need the type cast operation int(. . .), to convert name[0], a value of type byte, to
a value int(name[0]) of integer type, and then add to integer variable sum. The type
cast operation int(name[0]) pads the 8-bit value 01000001 of name[0] into a 64-bit
value, adding 56 O’s to the left.

The last statement of program name_to_number-0.go is an output statement. It
prints out the value of sum by using an fmt.Printf statement with the formatting verb
%d. That is, output the value of sum in decimal representation.

Example 2.4. Realizing a High-Level Formatting Verb with a Basic Verb

What if we only have the %c formatting verb? A challenge to students is to
implement formatting verb %d in fmt.Printf("%d\n", sum) by using only the basic
formatting verb %c. This is done by the third program name_to_number.go, which
demonstrates how to realize a more complex operation (the %d verb) via elementary
operations (the %c verb), as shown in Fig. 2.7. The functionality of the single-line

package main
import "fmt"
func main() {
var name string = "Alan Turing"
sum := 0
fori:=0;i<11;i++ {
sum = sum + int(name[i])
}
var sum_bytes [4]byte
var j int
for j =3; sum !=0; j-- {
sum_bytes[j] = byte(sum%10) + '0'
sum = sum/ 10
}
fmt.Printf("%c", sum_bytes[0])
fmt.Printf("%c", sum_bytes[1])
fmt.Printf("%c", sum_bytes[2])
fmt.Printf("%c", sum_bytes[3])
fmt.Printf("\n")

Fig. 2.7 Program name_to_number.go and its output
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statement fmt.Printf("%d\n", sum) in name_to_number-0.go is realized by the
eleven lines of code (marked in red) in name_to_number.go.

Writing name_to_number.go as a personalized program different for each student
is left as a programming exercise. Let us see how "1045" in Fig. 2.4b is printed out
by noticing the following. In Go notation, sum%10 is a modulus operation, i.e., sum
mod 10. It generates the remainder when sum divides 10. For instance, 86%10
generates 6. Expression sum / 10 is an integer division, and the result is rounded to
integer. For instance, 86/10 = 8, not 8.6.

The for j loop is equivalent to the following sequence of statements:

sum_bytes [3]=byte (sum%10)+'0' // sum bytes[3]=byte(1045%10)+'0"’

(='5")

sum = sum / 10 // sum=1045/10 (=104)

sum bytes[2]=byte (sum%10)+'0' // sum bytes[2]=byte(104%10)+'0"
(='4")

sum = sum / 10 // sum=104/10 (=10)

sum_bytes[1]=byte (sum%10)+'0' // sum bytes[l]=byte(10%10)+'0"’
(='0")

sum = sum / 10 // sum=10/10 (=1)

sum bytes[0]=byte (sum%10)+'0' // sum bytes[0]=byte (1%10)+'0"’
(='1")

sum = sum / 10 // sum=1/10 (=0)

The final print statement:
fmt.Printf ("\n")

changes to the next line (new line), to make a clean printout.

2.2.3 Good Programming Practices

This UKA unit introduces students to good programming practices. The resulting
code might be longer, but is easier for humans to understand, use, and maintain. We
illustrate five such practices by revising the code in Fig. 2.7. Modifying or updating
programs to improve software quality is called software maintenance, meaning to
maintain the code. The updated code, shown in Fig. 2.8, has several differences
from and improvements over the original code in Fig. 2.7.

* Use descriptive names for variables and constants. The new code uses more
descriptive studentName and sumBytes, both in camel notation, to replace the
less descriptive names: name and sum_bytes.

* Avoid magic numbers. The old code contains three magic number, 11, 4, 3, in
order of appearance. Magic numbers are numbers directly appearing in code
without context or explanation. A fellow programmer cannot understand what the
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package main

import "fmt"
const studentName = "Alan Turing"
const maxCodeLength =4 /I student code has at most 4 digits
func main() {
sum =0

fori:=0;1i < len(studentName); i++ {  // add up studentName to sum
sum = sum + int(studentNamel[i])

}

var sumBytes [maxCodeLength]byte  // array to hold characters of sum

var j int

for j = len(sumBytes) - 1; sum !=0; j-- { // extract each digit from sum
sumBytes[j] = byte(sum%10) + '0'
sum = sum/ 10

}

var k int

for k =j + 1; k < len(sumBytes); k++ { // print each digit of sum
fmt. Printf("%c", sumBytes[k])

}

fmt.Printf("\n")

Fig. 2.8 Program name_to_number-1.go with coding practice improvements

numbers indicate and why they have such values. The new code replaces 11, 4, 3
by three descriptive expressions len(studentName), maxCodeLength, and len
(sumBytes) — 1, respectively. The updated code has no more magic number.

* Avoid repetitive code. The updated code uses an abstraction, the for k loop, to
replace the repetitive code of four print statements.

* Put constant definitions up front. The updated code differentiates constants from
variables. It puts the two constant definitions up front, i.e., in one place at the
beginning of the code. If we want to print out the code value for another student,
e.g., "Gordon Moore" instead of "Alan Turing", we only need to go to this single
conspicuous place to modify the code.

* Use comments to document the code. Five lines of comments are added to help
users understand the code. Such comments are called documentation of a
program. Documentation is not necessary for a program to execute. However,
proper documentation improves the understandability of code.
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2.2.4 Using Dynamic Programing to Compute Fibonacci
Number F(50)

This UKA unit serves two purposes: to show that solving a larger-scale problem may
need a smarter algorithm; and to show that smarter algorithms may need new
program structures (such digital symbols are often called programming language
constructs). It is done by writing two programs to compute larger Fibonacci
numbers in two methods, recursive and dynamic programming. Two new constructs
are introduced: function and slice. Figure 2.9 contrasts these two programs fib-50.go
and fib.dp-50.go.

package main
import "fmt"
func main() {
fmt.PrintIn("F(50)=", fibonacci(50))
}
func fibonacci(n int) int {
ifn==01Iln==1{
return n
}
return fibonacci(n-1)+fibonacci(n-2)

}

(a)

package main
import "fmt"
func main() {
fmt.PrintIn("F(50)=", fibonacci(50))
}
func fibonacci(n int) int {
ifn==01Iln==1{

return n

}

var fib []int = make([]int, n+1) // make a slice fib

fib[0] =0 // initialize fib[0] and fib[1]

fib[1] =1

fori:=2;i<=n;i++ { // iteratively compute fibl[i]
fib[i] = fib[i-1] + fib[i-2]

}

return fib[n]

}

(b)

Fig. 2.9 The recursive and dynamic programming programs to compute Fibonacci numbers. (a)
Recursive fib-50.go. (b) Dynamic programming fib.dp-50.go
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A function is a sub-program to be used (called) by other statements in a program.
An example function definition starts with the keyword func:

func fibonacci (n int) int { ...}

It consists of four parts: (1) a function name fibonacci, (2) an input parameter n of
integer type, (3) a return value of type int, and (4) a function body which is a
sequence of statements enclosed between the curly brackets { and }.

This fibonacci function is used (called) in the statement

fmt.Println ("F(50) =", fibonacci (50))

by a function call fibonacci(50), where the parameter n assumes a value of 50. A
function can call itself. This recursive call is present in fib-50.go.

Program fib-50.go is almost the same as fib-10.go in Example 1.1. The only
difference is that we are computing a larger Fibonacci number F(50), instead of F
(10). The lecturer can compare these two programs by noticing their execution time.
The fib-50.go program, although very intuitive to the mathematic definition, is
painfully slow. It takes 3 minutes to output the result F(50) = 12586269025. The
fib.dp-50.go program is much faster, taking just a second. The reason is that the
second program utilizes a smarter algorithmic method called dynamic program-
ming: intermediate results F(i-1) and F(i-2) are memorized and accessed to compute
F(i), as demonstrated in the loop structure containing statement fib[i] = fib[i-1] + fib
[i-2]. This method avoids repetitions in computing F(i) multiple times in fib-50.go.

To support this memorization, a new data type called slice is used in the fib.dp-50.
go program. The statement

var fib []int = make ([]int, n+1)

declares a slice variable fib which points to an underlying array of n+1 elements of
type int. The length of the slice is the length of the underlying array, which can be
found by calling len(fib). The ith element of the slice is accessed via fib[i], where the
index i starts from O to n, namely len(fib)-1. The make function is a system provided
function, which creates and returns a slice with an underlying array of n+1 elements
of type int. All n+1 elements of the slice are initialized with the zero value
(Fig. 2.10).

slice length len(fib)
slice name: fib A
slice pointer: [ |
slice length: HM [0, 0, 0, ......, 0, 0]
index 01 2 ... n-1 n

Fig. 2.10 Tllustration of a slice variable fib, after statement var fib [Jint = make([]int, n+1)
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After making the slice fib, the program first initializes the first two elements fib
[0] and fib[1], and then iteratively computes fib[i], such that all elements from fib
[0] to fib[50] are computed exactly once. The sequence of execution steps is like the
following:

fib[0] =0
fib[1] =1
fib[2] =fib[1] + fib[0] //fib[2]l =1+0=1
fib[3] =fib[2] + fib[1] //fib[3] =1+1=2

fib[48] =fib[47] +fib[46] // fib[48] =2971215073 + 1836311903

=4807526976

fib [49] =fib[48] + fib[47] // fib[49] = 4807526976 + 2971215073
= 7778742049

fib [50] =1ib[49] + fib[48] // fib[50] = 7778742049 + 4807526976
=12586269025

return fib [50] // return 12586269025

Note that every newly computed Fibonacci value is stored (memorized) in slice
element fib[i] and later referenced. No Fibonacci value is computed more than once.

2.3 Computer as a Symbol-Manipulation System

The example of computing Fibonacci numbers shows that symbol manipulation
processes embodied in programs need the support of computer systems, to realize
basic arithmetic-logic operations, variable, function, loop, array, and slice.

We introduce a general model of computers in this section. It is called the stored
program architecture or stored program model, also known as the von Neumann
model or von Neumann architecture. We will use these terms interchangeably,
with this historical footnote."

A computing system usually has three layers: hardware, system software, and
application software, as illustrated in Fig. 2.11. Students so far have used the High-
Level Language interface. This section introduces a low-level interface, i.e., com-
puter instructions, to see how computers work. Most computer hardware today
adopts a stored-program architecture with the following five characteristics.

! Although the term von Neumann architecture is widely used, it is controversial. A reason is that
this term comes from a manuscript written by John von Neumann in 1945 with the title First Draft
of a Report on the EDVAC. The original manuscript did not list any author. Herman Goldstine, a US
Army officer overseeing the ENIAC project, circulated the report with only von Neumann's name
on it. Some computer pioneers argued that key ideas in the report, including the stored program
concept, were not proposed by von Neumann. Some books in computer architecture use terms such
as “stored-program architecture”, instead of the term “von Neumann architecture”. See Biblio-
graphic Notes for details.
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Application Software
fib.dp.go

HLL Interface

System Software
Linux, Golang Compiler

— Instruction Interface —

Hardware
Your Laptop Computer

Processor (CPU)
Registers and ALU I/0
I/0 Bus Input &
Control Unit <4—»| Output
Devices
A
Memory Bus
[ Memory ]

Fig. 2.11 The stored-program model of computers, also known as the von Neumann model

* Binary. Data and instructions use binary representations.
e P-M-I/O. The computer hardware is comprised of three interconnected compo-
nents: processor, memory, and I/O devices.

— The processor is also called CPU, for central processing unit. It executes
instructions using an arithmetic logic unit (ALU) and a small number of
general-purpose registers, under the control of a control unit. A modern
processor may also contain other processing units, such as graphics processing
unit (GPU) and machine learning processing unit.
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A
Processor »| Keyboard
I/0
Core Core Bus
»  Display
Cache
> Mouse
\ 4
Memory Bus I
T > I/0 Interface < > Power
v A
» Hard Disk
Memory
/0 o USB
Bus d
Motherboard ) > WiFi

Fig. 2.12 Tllustration of how main components are organized to form a computer

— The memory is also called main memory, accessed by CPU with an instruc-
tion. Registers may be considered special memory cells in CPU.
— 1/0O devices include hard disk, keyboard, mouse, display, printer, etc.

¢ Stored program. Both programs and data are stored in the memory and accessed
by processor.

¢ Instruction driven. The computer changes its state (the contents of memory and
registers) only when an instruction is executed.

e Serial execution. A computational process is a serial-execution process. Any
program is executed by automatically executing one instruction after another.

2.3.1 A Glimpse Inside a Computer

We can use the von Neumann model to look inside a computer, to see how the
components are organized and interconnected to form the hardware of a computer.
This more detailed inside organization is shown in Fig. 2.12.

The components in the right part of Fig. 2.12 are I/O devices. Processor and
memory are in the left part. They are interconnected by the memory bus and the I/O
bus. A popular I/O bus is the PCIE bus, for the Peripheral Component Interconnect
Express bus. An I/O Interface circuitry bridges the memory bus and the I/O bus. The
power unit (such as a battery) is also shown.

Motherboard is the main printed circuit board which provides a physical
substrate to host the memory bus, the I/O bus and the I/O Interface. All processor,
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Table 2.4 Parameters of a desktop computer according to von Neumann model

Processor Intel Core i15-4460 CPU @3.20 GHz, 6 MB cache
Memory 16 GB main memory
1/O devices Storage 640 GB hard disk
Keyboard Standard Dell keyboard
Display 2560x 1440 resolution
Mouse Optical mouse
Network 100 Gbps Ethernet, 100 Mbps WiFi

memory, I/O Interface microchips, and other circuitry interfacing the I/O devices, are
soldered on or plugged into the motherboard. The processor is a modern multicore
processor, capable of parallel processing. Each of the two cores is a CPU. A small
but fast memory, called cache, is also present in the processor.

It helps for each student to inventory his/her personal computer, e.g., laptop
computer, to make the above concepts more concrete and vivid. A hands-on exercise
is to list the main components of the computer according to the von Neumann model,
in the form of a table similar to Table 2.4, which contains data from a desktop
computer. This is an incomplete list, but already can lead to some interesting
questions. For instance, students have asked: why is a hard disk an I/O device?
The hard disk and the memory both stores data. Why do we distinguish them?

2.3.2 A Step-By-Step Process on a von Neumann Computer

To see why and how a computer is a symbol manipulation system, in this UKA unit
the students are asked to meticulously go through 16 steps of an example code,
where each step executes an instruction and forms a computer state transition.

The state of a computer at any time is comprised of the content of the main
memory and the content of the registers in the processor. We ignore the I/O devices
in this example. We consider only three types of registers here:

* General-purpose registers, denoted as RO, R1, R2.
» Special-purpose registers, two of which are used here.

— Status register FLAGS, which holds a set of status flag bits, to denote the status
of an instruction’s execution. Examples include whether the result is zero,
positive or negative, whether there is an overflow, etc.

— Program counter (PC), which holds the address of the instruction to be
executed next.

We show a step-by-step example how this Fibonacci Computer executes the
dominant part of the fib.dp-50.go program, i.e., the for loop structure:
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fori:=2;i<51; i++ { // n+lis 51 for F(50)
fib[i] =fib[i-1] + fib[i-2]

}

Code snippets of the Go language program (HLL interface) and the
corresponding assembly language code (instruction interface) are shown below
side by side, to highlight their correspondences. Assembly language code is a
sequence of instructions in human understandable form, instead of a string of 0’s
and 1’s. The two forms of code should be studied referring to the 17 tables in the
following pages, which show the state transitions of the computer hardware.

fib[0] =0 MOV 0, R1

MOV R1, M[RO] //R0=12 initially
fib[1] =1 MOV 1, R1

MOV R1, M[R0O+8]
fori=2;i<51; i++ { MOV 2, R2 // i=2
fib[i] =fib[i-1] + fib[i-2] Loop: MOV 0, R1 // label Loop

ADD M[RO+R2*8-16], R1
ADD M[RO+R2*8-8], R1
MOV R1, M[RO+R2*8-0]

INC R2 // i++
CMP 51, R2  //i<51?
} JL Loop // if Yes, goto Loop

Table 2.5 shows the initial state of the computer hardware. The binary code of the
twelve instructions is stored in the main memory from address O to address 11, each
instruction occupying one byte. In this example we assume the computer has only
these instructions. In general, the set of instructions a computer has available is
called the instruction set of that computer, which forms the instruction interface.

Note that address 5 has a label Loop, indicating the starting address of the loop in
the code. Addresses 12~419 hold data array fib, e.g., addresses 12~19 for fib[0],
20~27 for fib[1], etc. Each array element fib[i] is a 64-bit integer, needing 8 bytes.

Five registers are shown. FLAGS is the program status register, which holds
the status after an instruction’s execution, such as whether the compare instruction
(CMP) returns <, =, or >. PC is program counter, which holds the address of the
next instruction to be executed. PC = 0 when the program initially starts. FLAGS
and PC belong to the Control Unit in Fig. 2.12.

The example also shows three general-purpose registers RO, R1, and R2. Register
RO is used as a base register, which holds the base address of array fib, with an
initial value of 12, i.e., the address of fib[0]. Register R1 is used as an accumulator,
to hold the value of repetitive additions. Register R2 is used as an index register, to
hold the value of array index i in fib[i]. The address of an array element fib[i] is
calculated by address = base + index*8 + offset. The number 8§ here is due to
8 bytes in a 64-bit integer.

Thus, to realize fib[i] = fib[i-1] + fib[i-2], we need the following instructions:
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Table 2.5 Initial state: PC=0, RO=12; instructions addresses range 0~11, data addresses range
12~419. M[k] denotes the memory cell at address k

CPU contents

Memory contents

Register | Value | Address | Instruction Comments
FLAGS 0 MOV 0, R1 0—R1
PC 0 1 MOV R1, M[RO] R1—-MIRO]
RO 12 2 MOV 1, R1 1—-R1
R1 3 MOV RI1, M[R0O+8] R1—M[RO+8]
R2 4 MOV 2, R2 2—R2
RO: base register |5 Loop |MOV 0, R1 0—RI1
Initial value=12 |6 ADD M[R0O+R2%#8-16], R1 | R1+ M[RO+R2%8-16] — R1
7 ADD M[RO+R2#8-8], Rl | R1+ M[RO+R2*8-8] — R1
R1: accumulator |8 MOV R1, M[RO+R2%8-0] | R1— M[RO+R2%8-0]
R2: index 9 INC R2 R2+1—R2
register
Address=base 10 CMP 51, R2 Compare R2 to 51, status—FLAGS
+index*8+offset | 11 JL Loop If FLAGS is “<”, Loop—PC
fib[i-2]’s address | 12 fib[0]
=RO+R2*8 -16 |20 fib[1]
28 fib[2]
fib[0]’s address 36 fib[3]
=12+2%8- ...
16=12
412 fib[50]
MOV 0, R1 // initialize accumulator R1 to 0

ADD M[RO+R2*8-16], R1
ADD M[RO+R2*8-8], R1
MOV R1, M[RO+R2*8-0]

// R1 —fib[1]

// Rl+fib[i-2] — R1
// Rl+fib[i-1] — R1

When i=3, we compute fib[3] = fib[2] + fib[1]. We have base=12, index=3, and

fib[3] =fib[i-0]; its address is RO+R2*8-0=12+3*8-0=36; offset is 0
fib[2] =fib[i-1]: its address is RO+R2*8-8=12+3*8-8=28; offset is -8
fib[1] =fib[i-2]: its address is RO+R2*8-16=12+3*8-16=20; offset is

-16.

The next 16 tables on the next 8 pages each reflect a state of the computer after an
instruction is executed. We only show the steps till the value of fib[3] is computed.
Most steps (state transitions) exhibit changes in two places: a control state change in
PC and a data state change in a register or a memory location. We denote resulting
data of these state changes in boldface. The lecturer can ask the students to continue
drawing similar tables until the value of fib[4] is computed.

Note that these 16 tables show notations and memory layout simplified for ease of
learning. The following table shows a realistic, more complex initial state on an x86
processor using the AT&T assembly language notations (Table 2.6).
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Table 2.6 The same initial state on an x86 processor

CPU Content Memory Content
Register Value Address Instruction
eflags 0x672 mov $0, %rbx
rip 0x672 0x679 mov %rbx, O(%rax)
rax 0x201010 0x67¢ mov $1, %rbx
rbx 0 0x683 mov %rbx, 8(%rax)
rsi 0 0x687 mov $2, %rsi
0x68e<for_loop> mov $0, %rbx
0x695 add -16(%rax, %rsi, 8), %rbx
0x69a add -8(%rax, %rsi, 8), %rbx
0x69f mov %rbx, (%rax, %rsi, 8)
0x6a3 inc %rsi
0x6a6 cmp $50, %rsi
Ox6aa jl 68e
0x201010
0x201018
0x201020
0x201028
Step 1: 0—RI1. Also, PC+—PC+1=1.
CPU Contents Memory Contents
Register Value Address Instruction
FLAGS 0 MOV 0, R1
PC 1 1 MOV R1, M[RO]
RO 12 2 MOV 1, R1
R1 0 3 MOV RI1, M[R0+8]
R2 4 MOV 2, R2
5 Loop MOV 0, R1
6 ADD M[RO+R2%#8-16], R1
7 ADD M[RO+R2%#8-8], R1
8 MOV RI1, M[R0+R2%#8-0]
9 INC R2
10 CMP 51, R2
11 JL Loop
12
20
28
36




2.3 Computer as a Symbol-Manipulation System

Step 2:R1—MJRO0], i.e., 0—M[12].

67

Also, PC+—PC+1=2.

CPU Content Memory Content

Register Value Address Instruction

FLAGS 0 MOV 0, R1

PC 2 1 MOV RI1, M[RO]

RO 12 2 MOV 1, R1

R1 0 3 MOV RI1, M[R0+8]

R2 4 MOV 2, R2
5 Loop MOV 0, R1
6 ADD M[R0+R2#8-16], R1
7 ADD M[R0+R2#8-8], R1
8 MOV R1, M[R0O+R2%#8-0]
9 INCR2
10 CMP 51, R2
11 JL Loop
12 0
20
28
36

Step 3: 1—R1. Also, PC+—PC+1=3.

CPU Content Memory Content

Register Value Address Instruction

FLAGS 0 MOV 0, R1

PC 3 1 MOV R1, M[RO]

RO 12 2 MOV 1, R1

R1 1 3 MOV R1, M[R0+8]

R2 4 MOV 2, R2
5 Loop MOV 0, R1
6 ADD M[R0+R2#8-16], R1
7 ADD M[R0+R2*#8-8], R1
8 MOV R1, M[R0+R2%#8-0]
9 INC R2
10 CMP 51, R2
11 JL Loop
12 0
20
28

W
o)}
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Step 4: R1—M[RO+8], i.e., 1 =M[20]. Also, PC—PC+1=4.

CPU Content Memory Content

Register Value Address Instruction

FLAGS 0 MOV 0, R1

PC 4 1 MOV RI1, M[RO]

RO 12 2 MOV 1, R1

R1 1 3 MOV RI1, M[R0+8]

R2 4 MOV 2, R2
5 Loop MOV 0, R1
6 ADD M[R0+R2#8-16], R1
7 ADD M[R0+R2#8-8], R1
8 MOV R1, M[R0O+R2%#8-0]
9 INCR2
10 CMP 51, R2
11 JL Loop
12 0
20 1
28
36

Step 5: 2—R2. Also, PC+—PC+1=5.

CPU Content Memory Content

Register Value Address Instruction

FLAGS 0 MOV 0, R1

PC 5 1 MOV R1, M[RO]

RO 12 2 MOV 1, R1

R1 1 3 MOV R1, M[R0+8]

R2 2 4 MOV 2, R2
5 Loop MOV 0, R1
6 ADD M[R0+R2#8-16], R1
7 ADD M[R0+R2*#8-8], R1
8 MOV R1, M[R0+R2%#8-0]
9 INC R2
10 CMP 51, R2
11 JL Loop
12 0
20 1
28

W
o)}




2.3 Computer as a Symbol-Manipulation System

Step 6: 0—RI1. Also, PC—PC+1=6.

69

CPU Content Memory Content
Register Value Address Instruction
FLAGS 0 MOV 0, R1
PC 6 1 MOV R1, M[RO]
RO 12 2 MOV 1, R1
R1 0 3 MOV R1, M[RO+8]
R2 2 4 MOV 2, R2
5 Loop MOV 0, R1
6 ADD M[R0+R2%#8-16], R1
7 ADD M[R0+R2%8-8], R1
8 MOV R1, M[RO+R2*8-0]
9 INC R2
10 CMP 51, R2
11 JL Loop
12 0
20 1
28
36

Step 7: R1+M[RO+R2*8-16]—R1, i.e., 0+M[12]—R]1.

Also, PC+—PC+1=7.

CPU Content Memory Content
Register Value Address Instruction
FLAGS 0 MOV 0, R1
PC 7 1 MOV R1, M[RO]
RO 12 2 MOV 1, R1
R1 0 3 MOV R1, M[RO+8]
R2 2 4 MOV 2, R2
5 Loop MOV 0, R1
6 ADD M[R0+R2#8-16], R1
7 ADD M[R0+R2*8-8], R1
8 MOV R1, M[R0O+R2#8-0]
9 INC R2
10 CMP 51, R2
11 JL Loop
12 0
20 1
28

(9%
o)}
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Step 8: R1+M[R0O+R2*8-8]—R1, i.e., 0+M[20]—R1. Also, PC<—PC+1=8.

CPU content Memory content
Register Value Address Instruction
FLAGS 0 MOV 0, R1
PC 8 1 MOV R1, M[RO]
RO 12 2 MOV 1, R1
R1 1 3 MOV R1, M[RO+8]
R2 2 4 MOV 2, R2
5 Loop MOV 0, R1
6 ADD M[RO+R2%#8-16], R1
7 ADD M[R0+R2%8-8], R1
8 MOV R1, M[R0+R2*#8-0]
9 INC R2
10 CMP 51, R2
11 JL Loop
12 0
20 1
28
36

Step 9: R1—=M[R0+R2%*8-0], i.e., 1 —M[28]. Also, PC+~PC+1=9.

CPU content

Memory content

Register

Value

Address

Instruction

FLAGS

MOV 0, R1

PC

MOV R1, M[RO]

RO

12

MOV 1, R1

R1

MOV R1, M[R0+8]

R2

MOV 2, R2

Loop

MOV 0, R1

ADD M[RO+R2%8-16], R1

ADD M[RO+R2%#8-8], R1

MOV R1, M[R0+R2*#8-0]

NeREc.REN RN R RV, RN RUSHE SR R}

INC R2

CMP 51, R2

N N
— | o

JL Loop

—_
[\

0

[
(=)

1

[\
(o]

1

W
o)}
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CPU content

Memory content

Register Value Address Instruction
FLAGS 0 MOV 0, R1
PC 10 1 MOV R1, M[RO]
RO 12 2 MOV 1, R1
R1 1 3 MOV R1, M[RO+8]
R2 3 4 MOV 2, R2
5 Loop MOV 0, R1
6 ADD M[RO+R2%#8-16], R1
7 ADD M[R0+R2%8-8], R1
8 MOV R1, M[R0+R2*#8-0]
9 INC R2
10 CMP 51, R2
11 JL Loop
12 0
20 1
28 1
36

Step 11: Compare R2 to 51, result "<" —FLAGS. Also, PC+—PC+1=11.

CPU content

Memory content

Register

Value

Address

Instruction

FLAGS

MOV 0, R1

PC

11

MOV R1, M[RO]

RO

12

MOV 1, R1

R1

MOV R1, M[R0+8]

R2

MOV 2, R2

Loop

MOV 0, R1

ADD M[RO+R2%8-16], R1

ADD M[RO+R2%#8-8], R1

MOV R1, M[R0+R2*#8-0]

N=REc.REN RN R RV, RN RUSRE SR R}

INC R2

CMP 51, R2

N N
— | o

JL Loop

—_
[\

0

[N
(=)

1

[\
(o]

1

W
o)}
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Step 12: If FLAGS is <, Loop—PC. Loop is 5, 5—PC.
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CPU content

Memory content

Register Value Address Instruction

FLAGS < 0 MOV 0, R1

PC 5 1 MOV R1, M[RO]

RO 12 2 MOV 1,R1

R1 1 3 MOV R1, M[RO+8]

R2 3 4 MOV 2, R2
5 Loop MOV 0, R1
6 ADD M[RO+R2%#8-16], R1
7 ADD M[R0O+R2%#8-8], R1
8 MOV R1, M[R0+R2*#8-0]
9 INC R2
10 CMP 51, R2
11 JL Loop
12 0
20 1
28 1
36

Step 13: 0—RI1. Also, PC—PC+1=6.

CPU content Memory content

Register Value Address Instruction

FLAGS < 0 MOV 0, R1

PC 6 1 MOV R1, M[RO]

RO 12 2 MOV 1,R1

R1 0 3 MOV R1, M[RO+8]

R2 3 4 MOV 2, R2
5 Loop MOV 0, R1
6 ADD M[RO+R2%8-16], R1
7 ADD M[RO+R2%#8-8], R1
8 MOV R1, M[RO+R2#8-0]
9 INC R2
10 CMP 51, R2
11 JL Loop
12 0
20 1
28 1

W
o)}
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Step 14: R1+M[R0+R2%8-16]—R1, i.e., 0+M[20]—R1. Also, PC—PC+1=7.

CPU content

Memory content

Register Value Address Instruction
FLAGS < 0 MOV 0, R1
PC 7 1 MOV R1, M[RO]
RO 12 2 MOV 1, R1
R1 1 3 MOV R1, M[RO+8]
R2 3 4 MOV 2, R2
5 Loop MOV 0, R1
6 ADD M[R0O+R2%#8-16], R1
7 ADD M[R0+R2%8-8], R1
8 MOV R1, M[R0+R2*#8-0]
9 INC R2
10 CMP 51, R2
11 JL Loop
12 0
20 1
28 1
36

Step 15: R1+M[R0+R2%8-8]—R1,

ie., 1+M[28]—RI1.

Also, PC<—PC+1=8.

CPU content

Memory content

Register Value Address Instruction
FLAGS < 0 MOV 0, R1
PC 8 1 MOV R1, M[RO]
RO 12 2 MOV 1,R1
R1 2 3 MOV R1, M[RO+8]
R2 3 4 MOV 2, R2
5 Loop MOV 0, R1
6 ADD M[RO+R2%8-16], R1
7 ADD M[RO+R2%#8-8], R1
8 MOV R1, M[RO+R2#8-0]
9 INC R2
10 CMP 51, R2
11 JL Loop
12 0
20 1
28 1

W
o)}
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Step 16: R1—M[R0+R2*#8-0], i.e., | =M[36]. Also, PC<—PC+1=9.

CPU content

Memory content

Register Value Address Instruction
FLAGS < 0 MOV 0, R1
PC 9 1 MOV R1, M[RO]
RO 12 2 MOV 1, R1
R1 2 3 MOV RI1, M[R0+8]
R2 3 4 MOV 2, R2
5 Loop MOV 0, R1
6 ADD M[RO+R2%#8-16], R1
7 ADD M[R0O+R2%#8-8], R1
8 MOV R1, M[R0+R2*#8-0]
9 INCR2
10 CMP 51, R2
11 JL Loop
12 0
20 1
28 1
36 2

2.4 Exercises

1. The binary representation of decimal number 14.875 is:

(a) 1110.111
(b) 1111.011
(c) 1110.101
(d) 1111.101

2. The binary representation of the two’s complement of integer -12 is:

(a) 00001100
(b) 10001100
(c) 01110100
(d) 11110100

3. In Sect. 2.1, there is a question mark in the table about temperature in Beijing.
The temperature in question has a value of 32 °C, which cannot be represented
with only 5 bits. How to fix this problem?

(a) Use 6 bits to represent temperature values from 0y°C to 63 °C.
(b) Represent 32 °C and every other higher temperature by 11111, which is
already used as the representation for 31 °C.
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(c) Represent 32 °C and every other higher temperature by 11111 and signals an
overflow.

(d) Use 5 bits in only those scenarios where the temperature values are
constrained to the range from 0 °C to 31 °C.

4. Consider the design of a digital display for a thermometer. We need to convert
analog temperature signals between —50 °C to 50 °C into digital display
symbols. In other words, we need to be able to display all temperature readings:
-50, —-49 ..., -01, 00, 01, .. ., 49, 50. How many bits are needed with each of
the following three number representations? Put the correct capital letter in the
parentheses of each line below.

(a) The unsigned integer format needs () X: 6 bits
(b) The simple signed integer format needs () Y: 7 bits
(c) The two’s complement format needs () Z: Can not be done

5. Consider the following three number representations for eight-bit numbers. Put
the correct capital letter in the parentheses of each line below.

(a) The smallest value of unsigned integer is () U: 00000000
(b) The largest value of unsigned integer is () V: 00000001
(c) The smallest value of simple signed integeris () W: 01111111
(d) The largest value of simple signed integer is () X: 10000000
(e) The smallest value of two’s complement is () Y: 10000001
(f) The largest value of two’s complement is () Z: 11111111

6. Consider the three number representations for eight-bit numbers. To show
overflow conditions, put the correct capital letter in the parentheses of each

line below.

(a) For unsigned integers, the result is smaller than () U: -128
(b) For unsigned integers, the result is larger than () V:-127
(c) For simple signed integers, the result is smaller than () W: 0
(d) For simple signed integers, the result is larger than () X: 127
(e) For two’s complement integers, the result is smaller than () Y: 128
(f) For two’s complement integers, the result is larger than () Z: 255

7. Refer to the algorithm for 8-bit integer adder in Sect. 2.1. Design an algorithm
for a two’s complement subtractor computing C=A-B, where A, B, C are 8-bit
integers in two’s complement representation. Verifying the correctness of the
subtractor by putting the correct capital letter in the parentheses of each line

below.

(a) When A=63 and B=64, the result of 63-64 is () V: 00000000
(b) When A=-63 and B=64, the result of (-63)-64 is () W: 00000001
(c) When A=64 and B=63, the result of 64-63 is () X: 01111111
(d) When A=64 and B=-63, the result of 63-(-64) is () Y: 10000001

(e) When A=-64 and B=-63, the result of (-64)-(-63) is () Z: 11111111
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To represent ASCII characters, put the correct capital letter in the parentheses of
each line below. Note that there are three types of number representations:
binary, decimal, and hexadecimal.

(a) 00000000, is the ASCII encoding for the character () U: NUL
(b) 5A;¢ is the ASCII encoding for the character () V: SP
(c) 97,9 is the ASCII encoding for the character () W: 0

(d) 0x20 is the ASCII encoding for the character () X:a

(e) 48¢ is the ASCII encoding for the character () Y:Z

(f) 00101011, is the ASCII encoding for the character () Z: +

. To display the question mark symbol, the correct statement is:

(a) fmt.Printf(*“%c”, 7°)
(b) fmt.Printf(“%b”, 63)
(c) fmt.Printf(“%c”, 63)
(d) fmt.Printf(“%d”, 63)
(e) fmt.Printf(“%c”, ?)
(f) fmt.Printf(*“%c”, ‘63)

To print out the ASCII symbol for escape (ESC), the correct statement is:

(a) fmt.Printf(“%c”, ‘ESC”)

(b) fmt.Printf(“%c”, 00011011)
(¢) fmt.Printf(“%c”, 27)

(d) fmt.Printf(“%c”, ‘27")

Regarding integer division and the mod operation, which of the following
statements are/is correct?

(@) 18/10=18
(b) 18/10 =1
© 18% 10=28
(d) 18 mod 10 = 1

The following program compares student name to a character string to see how
many common characters there are.

package main
import "fmt"
func main() {
var name string = "Alan Turing"
var c¢s string = "Computer Science"
sum := 0
fori:=0;i<11; i++ {
forj :=0; j <len(cs); j++ {
if name [i]==cs[j] {sum++}
}
}

fmt.Printf ("$d\n", sum)
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The correct output is:

(@) 5
(b) 6
()7
(d) 8
(e 9
The following program does the same thing as Exercise 12. However, it follows

good programming practice and is easier for human to understand.

package main
import "fmt"

const studentName = "Alan Turing"
const targetString = "Computer Science"
func main() {

sum := 0

fori :=0; i < len(studentName) ; i++ {

forj :=0; j < len(targetString); j++ {
if studentName [i] ==targetString[j] {
sum = sum + 1
1

}
}

fmt.Printf ("%d\n", sum)

}

How has the new code improved over the code in Exercise 127

(a) The two const statements use descriptive names studentName and
targetString, instead of using non-descriptive name and cs.

(b) The two const statements use constant declaration, instead of variable
declaration. Constant declaration is more appropriate since the two entities
studentName and targetString do not change their values in the code.

(c) In the outer for loop, the expression i < len(studentName) gets rid of the
magic number 11 in the expression i < 11 of the old code.

(d) Code of the main function does not depend on the specific values of
studentName and targetString. We can compare a new student name, e.g.,
by changing "Alan Turing" to "Gordon Moore". The old code will fail.

(e) The new code has no improvement, because the code is longer.

Personalized programming exercise. Write a Go program to output the student
code in the following way. Suppose Alan Turing’s studentName "Alan Turing"
and his studentNumber 8009970023 are given. Compute the sum of the ASCII
encoding values of the eleven characters in the string "Alan Turing"; compute
studentCode = studentNumber / sum / sum; then output the value of
studentCode. For Alan Turing, the program outputs 7334.

Each student (e.g., Ada Smith) uses her/his student name and student number
to generate the student code, with three constraints: (1) only format verb %c is
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used; (2) student number is a 10-digit decimal number; and (3) the program
should follow good programming practice.
The von Neumann model of computer has the following features:

(a) A computer consists of interconnected processor, memory and I/O devices.
(b) Symbols are represented as binary digits (bits).

(c) Data and programs are stored in memory.

(d) A program is serially executed by executing one instruction after another.

Which of the following statements are/is correct for a typical computer?

(a) The address of the instruction to be executed next is stored in the program
counter (PC).

(b) Every computer has an instruction set.

(c) A program in execution has a Standard Input, a Standard Output, and a
Standard Error devices.

(d) A hard disk stores data. So, it is a memory device, not an I/O device.

Which of the following statements are/is correct regarding the state of a von
Neumann computer?

(a) The state of a computer refers to the contents of the registers.

(b) The state of a computer refers to the contents of the memory.

(c) The state of a computer refers to the contents of the I/O devices.

(d) The state of a computer refers to the contents of the registers, the memory,
and the I/O devices. However, this chapter focuses on the contents of the
registers and the memory.

We want to use base, index and offset to find the byte address in memory of an
array element a[i] of 64-bit integer. Given base=200 and index i=3, which of
the following statements are/is correct?

(a) The byte address of a[i] is 224, because address = base + index*8 + offset =
200 + 3*8 + 0 = 224.

(b) The byte address of a[i] is 211, because address = base + index + offset =
200 + 3 + 8 = 211.

(c) The byte address of a[i] is 267, because address = base + index + offset =
200 + 3 + 64 = 267.

(d) The byte address of a[i] is 392, because address = base + index*64 + offset
=200 + 3*64 + 0 = 392.

Consider the loop body fib[i] = fib[i-1] + fib[i-2] in Fig. 2.8. Suppose the
address of fib[i] is RO+R2*8. Which of the following statements are/is correct?

(a) The address of fib[i-1] is RO+R2*8-8.
(b) The address of fib[i-2] is RO+R2*8-8.
(c) The address of fib[i-1] is RO+R2*8-16.
(d) The address of fib[i-2] is RO+R2*8-16.

— e
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Refer to Table 2.5 and associated explanation text. Assume part of the initial
computer state is shown in the following table.

CPU content Memory content
FLAGS PC RO R1 R2 M[12] M[20] M[28] M[[36]
< 0 12 6 3 2 1 2 3

How will the computer state change after executing each of the following
instructions? Put the correct capital letter in the parentheses of each line below.

(a) MOV 0, R1 makes () U: FLAGS='<'

(b) MOV R1, M[RO+R2*8+8] makes () V: M[44]=6
(c) ADD M[RO+R2#*8-16], R1 makes () W: PC=5

(d) INC R2 makes () X: R1=0
(e) CMP 51, R2 makes () Y: R1=7
(f) JL 5 makes () Z: R2=4
21. Refer to Table 2.5 and associated explanation text. Assume part of the initial
computer state is shown in the following table.
CPU contents Memory contents

FLAGS PC RO R1 R2 M[12] M[20] M[28] MI[[36]

<

0 12 6 3 2 1 2 3

22.

23.

How will the computer state change after executing each of the following
instructions? Put the correct capital letter in the parentheses of each line below.

(a) MOV 0, R1 makes () U: PC=0
(b) MOV R1, M[RO+R2*8+8] makes () V: PC=1

(c) ADD M[R0O+R2*8-16], R1 makes () W: PC=2
(d) INC R2 makes () X: PC=3
(e) CMP 51, R2 makes () Y: PC=4
(f) JL 5 makes () Z: PC=5

Digital symbols can be used to represent the following entities.

(a) Numbers, such as integers, floating-point numbers, natural numbers.

(b) Characters, such as ASCII symbols and Chinese characters.

(c) Media contents, such as texts, picture, audio, video, books.

(d) Processes of human endeavor, such as business processes, scientific pro-
cesses, computational processes.

Fill out the following form of von Neumann model with data from your personal
computer. Some example parameters of the lecturer’s computer are shown in
Table 2.4.
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Processor

Memory

1/0O devices Storage
Keyboard
Display
Mouse
Network

2.5 Bibliographic Notes

The chapter quotation is from Herbert Simon and Allen Newell [1], two pioneers of
artificial intelligence. The term “von Neumann architecture” and its controversy can
be found at [2, 3]. The website [4] offers an introductory tour of Go programming,
with accessible hands-on examples.
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Chapter 3 )
Logic Thinking s

Computer science is the continuation of logic by other means.
—Georg Gottlob, 2009

Logic thinking is concerned with one of the key questions in computer science: what
kind of problems can be correctly solved by computational processes? This question
can be broken down into two issues:

The correctness issue. How to rigorously define correctness of computational
processes? In doing so, we can have a rigorous definition of computable prob-
lems: those problems for which there exist correct computational processes.
The generality issue. Is there a computer that can be used to solve any comput-
able problem?

We introduce two bit-accurate models of computation: Boolean logic and Turing

machine, to rigorously define and analyze the correctness and generality of compu-
tational processes. Four main points are emphasized:

With Boolean logic and Turing machine, we are able to accurately model a
problem and the computational process to solve the problem. We can also define
and verify the correctness of the solution.

The above method is universal, that is, Boolean logic and Turing machine can be
used to model all computable problems and their solutions.

Boolean logic and Turing machines have limitations. There exist undecidable
problems, paradoxes and incompleteness theorems.

Logic thinking in computer science has differences from logic thinking of other
sciences. Logic thinking in computer science emphasizes bit accuracy and auto-
matic execution.

We proceed in the following sequence.

To ensure the correctness of a computational process, we make sure that each step
of the process is correct and that compositions of steps are correct.

To ensure one step is correct, we use Boolean logic.

To ensure the correctness of multiple steps, we use Turing machines.
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e To see the power and limitation of Turing machines, we study Church-Turing
Hypothesis and Godel’s incompleteness theorems.

3.1 Boolean Logic

Boolean logic is a formal logic system to reason about logic statements which can
have true (1) or false (0) values. Boolean logic has manifested in propositional logic
and predicate logic. It is a perfect match for computer science, because computers
use binary values of 0 and 1 to represent digital symbols.

We first use three examples to illustrate what problems can be solved by Boolean
logic. Solutions to these problems will be provided in later examples.

* The Congruent Triangles Problem, to show that Boolean logic can be used to
solve mathematic problems, without using mathematic domain knowledge.

e The Impatient Guide Problem, to illustrate that problems in many application
domains can be encoded as Boolean logic problems.

e The Adder Implementation Problem, to show that many computer hardware
components can be implemented as Boolean logic expressions.

Example 3.1. The Congruent Triangles Problem
Let us consider a statement in geometry: congruent triangles are also similar. More
precisely, if two triangles are congruent, they are also similar.

We are taught in geometry class that this statement is true. The teacher may even
have shown us a proof, using geometry knowledge.

Now consider another statement, which is related to the original statement:

If two triangles are not similar, then they are not congruent.

Logic thinking can be used to show that the second statement holds. The proof is
very simple. More importantly, it does not involve any knowledge in geometry.

Example 3.2. The Impatient Guide Problem

A tourist is traveling in the land of Oz and wants to go to the Emerald City. The
tourist reaches a crossroad with paths P and Q, one of which leads to the Emerald
City. There is a guide G at the crossroad, who comes from either the Honest Village
or the Lying Village. Anyone from the Honest Village always tells the truth, and
anyone from the Lying Village always tells lies. The guide is impatient, in that G
only answers one question from the tourist, and the answer is either “Yes” or “No”.

What question should the tourist ask the guide, to determine the correct path?

Example 3.3. The Adder Implementation Problem

In this example, we realize the addition operation of two n-bit numbers with Boolean
logic. This book asks students to realize adders in several contexts, because adders
are simple and fundamental. If we can do addition, we can also do many other
operations.
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3.1.1 Propositional Logic

Propositional logic is a logic system for reasoning about combinational propositions
made of propositional variables and logic connectives. An example is the proposition
“If the Earth is flat, then Alan Turing is a computer scientist”. In this section, we will
learn how to understand such a proposition and how to decide whether it is true or false.

3.1.1.1 Propositions and Logic Connectives

A proposition is a declarative sentence which has a truth-value, that is, being true or
false. For example, “this book is written in English”; “Beijing is China’s capital
city”. A proposition can contain one or more other propositions as parts. For
example, “5 is a prime number and 5 = 1 (mod 4)”.

We use variables x, y, z to denote proposition, and x = 1 means proposition x is
true while x = 0 means proposition x is false.

The word “and” in the previous ample is a logic connective called conjunction.
Propositional logic largely involves studying these kinds of logical connectives and
the rules determining the truth-values of the propositions combined from simpler
propositions and collectives. Five logical connectives are commonly used. Their
definitions and illustrative examples are shown in Box 3.1.

Box 3.1. Commonly Used Logic Connectives
* Conjunction A (also called AND): x Ay =1ifand only ifx =y = 1.
For example, the solution of x* + 2x <0 is x> — 2 and x < 0. We can
describe it as (x > — 2) A (x < 0).
* Disjunction V (also called OR): x V y = 0 if and only if x = y = 0.
For example, the solution of 2+ 2x > (O satisfiesx < — 2 orx > 0. We
can describeitas (x < —2) V (x > 0).
* Negation — (also called NOT): —x = 0 if and only if x = 1.
We also use ¥ to represent the negation of x, that is, x = —x.
e Implication —: (x—y) =l ifandonlyifx=0o0ry = 1.
We call x premise and y conclusion. Implication means x—y = 1 if and
only if the premise is false or the conclusion is true.
+ Exclusive-or (also called XOR) @ : x € y = 1 if and only if x # y.
That is, x € y is true iff either x or y (but not both) is true. Note
x P 1 = — x, that is, we can use exclusive-or operation to realize negation.

Four of the five connectives are straightforward. The implication connective may
look strange for beginners to logic. A key observation is that a false premise implies
anything! Thus, both of the following propositions are true:

The Earth is flat — Alan Turing is a computer scientist
The Earth is flat — Alan Turing is not a computer scientist
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Tal?le 3..1 Truth tab!e for X y XAy XVy X—y x®y
conjunction, disjunction,
LS . 0 0 0 0 1 0
implication, and exclusive-or

0 1 0 1 1 1

1 0 0 1 0 1

1 1 1 1 1 0

Table 3.2 Basic properties of propositional logic

Law Logic equivalence School logic (assume x=2, y=3, z=4)
Associativity xey)ez=x°(y*z), (2¢3)24=2+(3°4)
x+y)+z=x+@+2) 2+43)+4=2+03+4)
Commutativity xXey=yex 203=3.2
X+y=Yy+x 3+42=2+3
Distributivity x+y)ez=x*2+(y*2) 2+3)e4=24)+(34
xey)+z=x+20*(y+2) 23)+4#£R2+4)3+4)
Identity x+0=x,x*1=x 2+0=2,2¢1=2
Annihilator x*0=0,x+1=1 2¢0=0,2+1#1
Idempotence XeX=X,X+X=X 202#2,2+2#2
Absorption xey+x=x(x+y*x=x 23)+2#2,2+3)*2#2
Complementation x+—-x=1,xe—x=0 N/A

3.1.1.2 Truth Table

For any proposition, we can list its truth values on all of the possible combinations of
values of the variables, to form its truth table. The following table lists the truth
values for conjunction, disjunction, implication, and exclusive-or operations, given
the combinations of the truth values of propositional variables x and y (Table 3.1).

3.1.1.3 Properties of Logic Connectives

We call a proposition without connectives a primitive proposition, and a proposition
with one or more connectives a combinational proposition. The truth value of a
primitive proposition is not decided by proposition logic, but by the environment or
context where the primitive proposition is made. Proposition logic is concerned with
the truth values of combinational propositions, given the truth values of their
primitive propositions and the combinations with logic connectives.

From definitions of logic connectives in Box 3.1, we can derive basic properties
of propositional logic, as listed in Table 3.2. Additional properties are listed in
Table 3.3. We omit the proof and the reader can use truth table to verify these
properties.

A simple way to learn these properties is to contrast them to the logic we learned
from high-school math or algebra classes. Some basic properties of propositional
logic in Table 3.2 do not hold in high-school logic, shown in red. Note that we use
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Table 3.3 Additional properties of propositional logic

Law Logic equivalence

De Morgan law XAYy=xVyxVy=XAy

Implication defined in V , = x—y=XxVy

XOR defined in A, V, — x@Py=FAY)VEAY),xPy=xVy)AXTVY)
Associativity for XOR P Pa=cPy P=

Commutativity for XOR xPy=yPx

Identity for XOR xPo=x,xPl=x

the more familiar addition symbol + and multiplication symbol ¢ from school
classes, to denote disjunction (V) and conjunction (A).

The associativity, commutativity, and identity laws hold for both propositional
logic and high school mathematical logic. However, the distributivity and the
annihilator laws only hold for multiplication but not addition. In high school math,
multiplication distributes over addition, e.g., (2 + 3) ¢4 = (2 *4) + (3 * 4), but not
addition distributed over multiplication, e.g., (2 ¢ 3) + 4 # (2 + 4) * (3 + 4). The other
three laws of idempotence, absorption, and complementation do not hold at all in
high school math.

Table 3.3 lists additional properties for propositional logic which mainly consider
negation, implication, and exclusive-or operations.

3.1.1.4 Boolean Expression and Boolean Function

When we view logic connectives as operators, primitive and combinational propo-
sitions will become Boolean expressions. More formally, the set L of all Boolean
expressions is recursively defined as follows.

1. Initially, let O, 1, xq, ..., x, € L, where xi, ..., x,, are primitive propositions for
some natural number n. We also call O and 1 Boolean constants, and xy, . . ., x,
Boolean variables.

2. Recursively apply negation, conjunction, disjunction, implication, and exclusive-
or operations: If x, y € L, then —x, x * y, x + y, x—Y, x @ y € L. Use the basic
properties in Table 3.2 or 3.3 (sometimes called Boolean algebra axioms) to
reduce all equivalent expressions into one expression.

3. Repeat Step 2 until L does not change any more.

We also have the notion of Boolean functions. An n-input-1-output Boolean
function is a mathematical function f: {0, 1}"—{0, 1}, and the mapping is defined
by the truth table of f. For instance, the equation y = x;@x>p -+ Px, defines a
Boolean function to find the parity of xy, x5, -, x,,, where the output is y and the
n inputs are xi, X, ***, X,
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3.1.1.5 Normal Forms

Given any Boolean expression, we can use the basic properties of Tables 3.2 and 3.3
to find an equivalent expression which contains only AND, OR, and NOT. For
example, (xVy) —z=(xVy)Vz = (XAy)Vz = (xVz)A(¥Vz). Note that
there are several different ways to present an expression with only AND, OR, and
NOT. For example, the above example provides three different ways to represent
(x V y)—z with only AND, OR, and NOT. However, there is a uniform way to
achieve this via the truth table. Let us write down the truth table for (x V y)—z
(Table 3.4).

From the truth table, we know that there are three cases where the expression
(xVy)—zisfalse: (1) x=0, y=1, z=0;2)x=1,y=2z=0;3)x=y=1, z=0.
For the remaining five cases, the expression is true. For each case when the
expression is true, we can use a product clause to represent it. For example, clause
XAy ANZ represents the case x =y = z = 0, since X AyAzZ=1 if and only if
x =y =z=0. We then use V to connect those true clauses to represent the whole
expression:

XAFAZDYVEIAYAZVEAYADV(XATAZV (X AYyAzZ).

It is easy to check that the truth table for the above proposition is the same as the
truth table for (x V y)—z. Thus, they are equivalent propositions. We call it the
disjunctive normal form. Actually, for any proposition, we can use the above
method to write down its disjunctive normal form.

Theorem: For any proposition F(xj,x5,...,Xx,) # 0 with n variables, we can

uniquely represent it as the following disjunctive normal form:

F(x(,x3, ...,xn) =0, VO,V VO,

where each product Q; = [ Al A Al,,and [; = x; or X;.

This theorem is obtained by looking at 1-valued rows in a truth table. If we look at
0-valued rows in the truth table, can we also write an expression for (x V y)—z? The
answer is YES. For each 0-valued row, we can write the representations connected

Table 3.4 Truth table for

(xVy)—z
proposition (x V y)—z s

ol Bl el el K=l Kol Kool el 2]

— = O |O|=|=|O|O|x

—lol—~lcl~lol~|o|~

b O | O et | O |
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by OR. For example, the row “x = 0, y = 1, z = 0 can be represented by
(xVyVz). It means (x VyVz) =0 if and only if x =0, y = 1, z = 0. Finally,
we use AND to connect the representations for the three 0-valued rows.

(xVy) = z=xVIV)AEVYV)AEFVIV2).

This is another way to write an equivalent proposition for any proposition, and we
call it the conjunctive normal form.

Theorem: For any proposition F(xj,xs,...,x,) # 1 with n variables, we can
uniquely represent it as the following conjunctive normal form:

F(XI,xz, ...,x,,) = Ql /\Qz AN /\Qm

where each sum Q; =1 VL V- Vi, and [; = x; or X;.

3.1.1.6 The Number of Boolean functions

Given a natural number n > 0, how many different Boolean functions are there with
n input variables?

Note that a Boolean function may be represented as two or more equivalent
Boolean expressions. Two Boolean expressions are equivalent if they have the same
truth table. This is the same as saying that two Boolean expressions are equivalent if
they have the same disjunctive normal form or if they have the same conjunctive
normal form. Two Boolean functions are different, if they do not have equivalent
Boolean expressions. Thus, all equivalent Boolean expressions are counted as one,
when computing the number of different Boolean functions.

The original question can be reduced to the question: how many different truth
tables there are for n input variables and one output variable. Let us look at a truth
table of n input variables in general.

X1 Xo Xn-1 Xn y
0 0 0 0 Oorl
0 0 0 1 Oorl
0 0 1 0 Oorl
0 0 1 1 Oorl
.. .. Oorl
1 1 1 0 Oorl
1 1 1 1 Oorl

Any truth table has 2" rows. Consequently, the y column has 2" cells, and each
can have a 0 or 1 value. Each different configuration of 0/1 values in the 2" cells
represents a different truth table. There are 2> configurations. Thus, there are 2%
truth tables. So, there are 2%" distinct Boolean functions.
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The above result implies that any given Boolean function can be implemented by
a Boolean expression. From the normal form theorems, any Boolean function can be
implemented by AND, OR, NOT operations. This gives an affirmative answer to the
Adder Implementation Problem, since Adder is a Boolean function.

Example 3.4. The Numbers of Boolean Functions of One and Two Variables
For any given integer n > 0, there are 2> distinct Boolean functions. Let us
understand this result more concretely by explicitly enumerating all Boolean expres-

sions for n=1 and n=2. In this example, we only apply negation, conjunction and
disjunction operations in each round.

First consider the case when n = 1. The number of Boolean functions is 22 =4.
We can use the recursive definition of Boolean expressions to find all Boolean
functions of one input variable x. The four functions are shown below with their
truth tables. They are: y is always false, y is always true, y = x, and y = NOT x.

X |y x|y X1y X1y
010 01 00 01
110 111 1)1 10
y=0 y=1 y=x y=x

Now consider the case when n = 2. The number of Boolean functions is 2>'=16.
Again, we use the recursive definition of Boolean expressions to find all Boolean
functions of two input variables x; and x,.

Round 1. y =0,y = 1,y = x;,y = X2,y = X1,y = X;. Note that we simplify the
process by putting negations of Boolean variables in the initial step. At the end of
round 1, we have the Boolean expression set L = {0, 1,x;,x2,%7,x%;} . The
corresponding truth tables are shown below.

x1|x2|p X1 |x2|y X1 | X2 |y X1 |x2|y
010 |0 010 |1 000 010 |0
01110 01 |1 010 0|1 |1
1 10 (0 1 10 |1 1 10 |1 1100
1|1 10 1|1 |1 L |11 1|1 ]1
y=0, y=1 Yy =Xy Yy =X
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X1 |x2 |y X1 |Xx2 |y
0 (0 |1 0|1
0|1 |1 110
1 10 |0 1 10 |1
1 |1 1]0 1110
y =Xy, y =X

Round 2. Apply AND, OR, NOT to L, and use the axioms of Boolean expres-
sions to eliminate redundant expressions. We add to L eight new expressions:

X1 VX, x1Vxy, x1Vxy, x1Vxy, X1 ANX3, X1 ANXx2,X1 ANXp, X1 ANXp

We have the new Boolean expression set

L={0,1,x1,x0, X1, %25 X1 VX2, X1 V X2,X1 V Xp,x1 VXp, X1 AXp, X1 AXo, X1 AXo, X1 AXp}.

The corresponding truth tables for the eight new expressions are shown below.

X1 | X2 |y Xt |x2 |y X1 | X2 |y X1 | X2 )
010 |1 010 |1 010 |1 01010
011 |1 011 |1 01110 01 |1
110 |1 11010 110 |1 1 10 |1
1 |11]0 1|1 |1 1|1 |1 1|1 |1
Y =X VX, Yy =% VX, Y= x VX, y=x1VXy
X1 |Xx2 |y X1 | X2 |y X1 | X2 |y X1 | Xx2 |y
00 |1 0010 01010 0/010
0110 01 |1 0of1 1o 0110
1 101}o0 110 1|o0 110 |1 11010
L {110 1 ({1 1]0 1 {110 1 (1|1
y=x_1/\x_2, y=x_1/\x2, yle/\x_Z! y:xleZ

Round 3. Apply AND, OR, NOT to L, and use the axioms of Boolean expres-
sions to eliminate redundant expressions. We add to L two new expressions:

(B ARV (X1 Axz), (B Ax2)V (x1 AXz)

We have the new Boolean expression set



90 3 Logic Thinking

L={0,1,x1,X2,%1,%2;%1 VX2,%1 VX2,%1 VX2,%1 VX2, X1 AXp, X1 AXp, X1 AX, X1 A Xy
(FIAT) V(21 Ax2), (G Ax2) V(X1 AXR) }-

The corresponding truth tables for the two new expressions are shown below.

X1 | x2 |y X1 | x2 |y
0 [0 |1 0 |0 |0
0 1 0 0 1 1
1 0 [0 1 0 |1
1 1 1 1 1 0

Y=@ATDVAL), ¥= @AK)V (AT

Round 4. Apply AND, OR, NOT to L. We get no more new expressions. Stop.
The final set of all 16 Boolean expressions are in the L obtained in Round 3.

Example 3.5. The Adder Implementation Problem, Revisited

Students are asked to implement an adder, which takes two n-bit numbers X and Y as
inputs and produces an n-bit number Z as the output. The adder is an n-input-n-
output Boolean function. Since any n-input-1-output Boolean function can be
implemented by an n-variable Boolean expression, we can theoretically use n such
Boolean expressions to implement an n-input-n-output Boolean function. In prac-
tice, we can often have better implementations.

Let us start at n=1. A full adder has three input variables x;, y;, ¢y and two
output variables z, ¢;. Sometimes we simplify the variables as x, y, ¢, Z, Cous, Where
Cin = Co 18 the carry-in, and ¢,,,; = ¢y is the carry-out. The function of a full adder can
be understood as x; + y; + ¢, = (Cou2)2 Where xy, yy, ¢;, are three 1-bit binary
numbers and (c,,;2), is a 2-bit binary number. We can use 2 Boolean expressions to
compute z, ¢, See the following equations and truth table:

t=x@PyP e cou = xAY)V ((x@y) /\cm)

Cin X y 4 Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
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Students are asked to verify that these equations correctly implement the addition
of 1-bit binary numbers (unsigned integers).

With the full adder concept in place, it is straightforward to implement an n-bit
adder, by cascading n full adders, where the carry-out of the current bit serves as the
carry-in of the next bit. The equations relating the input variables to output variables
follow:

2 =x1@y; Bco; c1=(x1 Ay)V((x1 By;) Aco)
n=0@n@Oc; ca=@Ay)V(B®y)Ac)
z=x3@y;@Bcs =AYV ((Dy;)Aa)

1 =X 1 DY 1 Bn2s it = Xt A1) V(1 @ Yu1) Acnz)
Zn = Xp @yn @Cnfl; Cn = (-xn /\yn) \ ((-xn @yn) A Cnfl)

The above equations realize the addition of n-bit binary numbers X and Y:
(e - X2 + Ve - Y1)2 + €0 = (CuZn- - -Z1)2-

3.1.1.7 (***) Kleene Logic

In Table 3.2, we show that when logic connectives AND and OR are used as
multiplication and addition operators, respectively, we have a Boolean algebra, the
Boolean logic of which is different from the familiar logic of school algebra.

We also have shown that given any Boolean function, there exists a Boolean
expression that implements the Boolean function. In other words, any Boolean
function can be implemented by AND, OR, NOT operators over Boolean constants
and Boolean variables. This beautiful property should not be taken for granted. A
slight change could nullify this property. Let us look at an example.

The set of all Kleene expressions L is recursively defined as follows.

1. Initially, let O, 1, xy, ..., x, € L, where O and 1 are Kleene constants, and xy, . . ., X,
are Kleene variables.

2. Recursively apply NOT, AND, OR to L: If x, y € L, then —x, x*y, x+y € L. Use the
basic properties in Table 3.5 (called Kleene algebra axioms) to reduce all
equivalent expressions into one expression, that is, to eliminate redundancy.

3. Repeat Step 2 until L no longer changes.

Note that the Complementation law x + —x = 1 does not hold anymore. It is
replaced by three weaker laws: the de Morgan law, the double negation law, and the
product law. This seemingly slight change to Boolean logic makes the following
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Table 3.5 Contrasting the axioms of Boolean algebra and Kleene algebra

Law Boolean algebra Kleene algebra
Associativity xey)ez=x°(y*z), xey)ez=x°(y*z),
X+ +z=x+Q+2 x+y)+z=x+Q+2)
Commutativity xey=yex xey=yex
X+y=y+x X+y=y+x
Distributivity x+y)ez=@x*2)+ (2 x+y)ez=x*2)+(°*2)
(xey+z=x+2)*(+2) (xey+z=x+2)*(+2)
Identity x+0=x,x°1=x x+0=x,x1=x
Annihilator x*0=0,x+1=1 xe0=0,x+1=1
Idempotence XeX=X,X+X=X XeX=X,X+X=X
Absorption (x*y)+x = X, (Xx+y)*ox =x (xoy)+x = X, (x+y)*x = x
Complementation x+x=1,xex=0 N/A
de Morgan —(xty)="x°* 7y, (x *y)="x + 7y
Double Negation X =X
Product pexitpex; = ptpexitpei

Table 3.6 The numbers of distinct Boolean and Kleene expressions of n variables

n # of Distinct Boolean expressions # of Distinct Kleene expressions
1 22 _ 4 6

2 22 = 16 84

3 22 _ 956 43918

4 22" — 65536 160297985276

In general 2% Unknown but < 2%

statement to be false: any Kleene function can be implemented by AND, OR, NOT
operators over Kleene constants and Kleene variables.

In Boolean algebra, pex;+p*—x; = p*(x;+—x;)= p. But in Kleene algebra, this no
longer holds. We have pex;+pe—x; = p+pex;+p*—x;, where p is a product of Kleene
variables and their negations. For instance, given the product p = —x;*x,, from the
product law we have (—LX] 'X2)'X3+(—|X]'XZ)'—|X3 = —X1%°X + X *X2%X3 + —X1®Xp*—X3,
not (—x1°x)*x3+(—Xx1%x5)*—X3 = —X{°Xs.

We know that there are 22" distinct Boolean expressions of n variables, with the
assumption that equivalent expressions are counted as one expression.

How many distinct Kleene expressions of n variables are there, for a given n>07?
This is still an open problem. We compare the numbers of distinct Boolean and
Kleene expressions of n variables in Table 3.6. Note that we still do not know the
formula for the number of distinct Kleene expressions, but do know that this number
is less than 2%

To have a more concrete understanding, let us enumerate all Kleene expressions
of one variable x. Initially, the set L of Kleene expressions is L = {0, 1,x}.

Round 1. We obtain a new expression x.The new L = {0, 1, x; x}.

Round 2. For Boolean expressions, we would stop here, as L no longer changes.



3.1 Boolean Logic 93

Table 3.7 Truth table show-
ing the truth values of AND,
OR, NOT operators in Kleene
logic
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Round 2. For Kleene expressions, we continue and obtain two new expressions
x X, x+xthenew L ={0,1, x; X; x-X,x+Xx}.

Round 3. Stop, since L no longer changes.

Note that the number of Boolean expressions of one variable x is 22'=4. These
four expressions are: always false, always true, identical to x, and NOT x. For Kleene
logic, the number of Kleene expressions is 6. The two new expressions are: x AND
(NOT x), and x OR (NOT x), which are absent from Boolean logic.

‘We also have the notion of Kleene functions, similar to Boolean functions. An n-
input-1-output Kleene function is a mathematical function

£{0,1,1}" — {0, 1, 1}, and the mapping is defined by the truth table of f. Different
from binary Boolean logic, Kleene logic is ternary, in that we have three values.
Besides 0 (False) and 1 (True), we have a new middle value I for Indeterminate.
Table 3.7 shows the truth values of the AND, OR, NOT operators on two variables
x and y.

Note that there are 3°" n-input-1-output distinct Kleene functions and truth tables.
For n=1, there are 33' = 27 distinct functions but only six distinct Kleene expres-
sions. Many Kleene functions cannot be represented by Kleene expressions. Thus, in
Kleene logic, some Kleene functions cannot be implemented by AND, OR, NOT.

3.1.1.8 Using Propositional Logic to Solve Problems

We discuss four examples to show how logic helps produce correct computational
processes.

Example 3.6. The Congruent Triangles Problem, Revisited

Given any conditional statement “if P then Q”, we denote it in propositional logic as
P—Q. The negation of this statement is NOT(f P then Q), or =(P—Q). The two
statements are related. Only one is true.

Using the triangles example, let us call “P—Q” the original statement, where P
stands for “two triangles are congruent” and Q stands for “two triangles are similar”.
Four types of statements are derived from the original statement, as shown in
Table 3.8. These four types of statements are logically related.
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Table 3.8 The Converse, Inverse, Contrapositive, and Negation of a conditional statement

Statement type Logic form Triangles example

Original P—Q If two triangles are congruent, then they are similar
Converse Q—P If two triangles are similar, then they are congruent
Inverse (=P)—(—Q) If two triangles are not congruent, then they are not similar
Contrapositive (=Q)—(—=P) If two triangles are not similar, then they are not congruent
Negation —(P—Q) NOT (If two triangles are congruent, then they are similar)

These logic relationships can be used to arrive at new statements and their truth
values, sometimes without needing domain knowledge of geometry.

The original statement, “if two triangles are congruent, then they are similar”, is a
true statement. We know this from geometry. Congruent triangles have the same
shape and size. Similar triangles have the same shape. Two triangles, having the
same shape and size, of course have the same shape. Thus, they are similar. That is,
P—Q is a true proposition.

The converse of the original statement is “if two triangles are similar, then they
are congruent”. The converse of the conditional statement P—Q is the statement
obtained by exchanging the position of P and Q, namely, Q—P. From geometry
knowledge, we know this statement is false. Two similar triangles can have the same
shape but different sizes, thus are not congruent. That is, Q—P is a false proposition.

The inverse of the original statement is “if two triangles are not congruent, then
they are not similar”. The inverse of the conditional statement P—Q is the statement
obtained by negating both P and Q, namely, (—P)—(—Q).

Now, what is the truth value of the inverse statement? Is it true or false? We can
obtain the answer without knowing geometry. In fact, we know immediately that the
inverse statement (—P)—(—Q) in this example is a false proposition, because (1) the
converse statement is false, and (2) the converse and the inverse statements are
logically equivalent. The second point can be proven easily by showing that (—P)—

(=Q) = Q—P.

(=P)—(—Q) The given inverse statement

= —(=P) V (=Q) by implication property P—Q =—-P vV Q
=PV (—=Q) eliminate double negation

=—-Q V P use communicative law

= Q—P obtain the converse by implication property.

The contrapositive of the original statement is “if two triangles are not similar,
then they are not congruent”. The contrapositive of the conditional statement P—Q
is the statement obtained by negating both P and Q, and then exchanging positions,
namely, (—Q)—(—P). We can show that the contrapositive statement and the
original statement are logically equivalent. That is, (=Q)—(—=P) is equivalent to
P—Q. The proof is the same as showing (—P)—(—=Q) = P—Q.

Finally, the negation of the original statement is “NOT (If two triangles are
congruent, then they are similar)”. The negation of the conditional statement P—Q is
just the logic negation, namely, —(P—Q). It can be transformed into other equivalent
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forms: =(P—Q) = —=(=P V Q) = (—+P) A (=Q) =P A (—Q). That is, “Two triangles
are congruent AND they are not similar”’, which is a false statement.

Note that the negation is not the same as the inverse. The original statement AND
its negation always form a contradiction: (P—Q) A —=(P—Q) = FALSE. The original
statement AND its inverse yield “P is identical to Q”: (P—Q) A (-P——Q) = P=Q.

Example 3.7. The Impatient Guide Problem, Revisited

A tourist is traveling in the land of Oz and wants to go to the Emerald City. The
tourist reaches a crossroad with paths P and Q, one of which leads to the Emerald
City. There is a guide G at the crossroad, who comes from either the Honest Village
or the Lying Village. Anyone from the Honest Village always tells the truth, and
anyone from the Lying Village always tells lies. The guide is impatient, in that G
only answers one question from the tourist, and the answer is either “Yes” or “No”.

What question should the tourist ask the guide, to determine the correct path?

The main difficulty is as follows. On one hand, the tourist needs to collect
information which apparently needs at least two answers to Yes-No questions. On
the other hand, the impatient guide only answers one question. Fortunately, propo-
sitional logic tells us that we can use proper connectives to combine two propositions
into a single proposition. One of the propositions should contain information about
the Honest or Lying Village, the other should be about the path to the Emerald City.
With this line of thought, we come up with the following question:

Are your answers the same, to the two questions “are you from the Honest Village” and
“does path P lead to the Emerald City”?

If the answer is “Yes”, take path P; if the answer is “No”, take path Q.
To make the above reasoning clearer, let us use propositional notations to denote
the solution.

* H denotes the proposition “G is from the Honest Village”. That is, H=1 means G
is from the Honest Village; H=0 means G is from the Lying Village.

* S denotes the proposition “Path P leads to the Emerald City”. That is, S=1 means
path P leads to the Emerald City; S=0 means path Q leads to the Emerald City.

With these notations, the single question to ask is =(HEPS)="?. However, the
answer we get is not the true value of =(HEPS) since it depends on whether the guide
G comes from Honest Village or not. If G is from the Honest Village, we will get the
true value of —(HEPS); while if G is from the Lying Village, we will get the true
value of HEPS. If we use the propositional notations to represent the above argu-
ment, the answer we will hear is actually (—H)@ —(HES). By applying the
properties in Table 3.2 and 3.3 or calculating the truth table of this Boolean
expression, it is easy to find that (-H)@ —(HEPS) = S. Thus, we should choose
path P if the answer we get is “Yes” and choose path Q if the answer we get is “No”’.

To make the argument clearer, we verify the correctness of the question and its
answer by using a truth table.
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H S —(HPS) Comments

0 0 1 G is lying and the true value of the question is “Yes”
The answer is “No”, take path Q

0 1 0 G is lying and the true value of the question is “No”
The answer is “Yes”, take path P

1 0 0 G is telling the truth and the true value of the question is “No”
The answer is “No”, take path Q

1 1 1 G is telling the truth and the true value of the question is “Yes”

The answer is “Yes”, take path P

Example 3.8. The Parity Program to Show Logic and Bit-Shift Operations
The parity of a number refers to whether the number’s bits have an even number of
1’s (parity is 0) or an odd number of 1’s (parity is 1). The program parity.go below
computes the parity values of 63 and 127. The parity function computes parity Value
=XoP X, P X> P...PXes for any 64-bit integer X = (Xg3Xe5- - -Xo)2, where P
is the XOR operator. So, 63 = 0...00111111 has six 1’s (even, parity is 0), and
127 =0...01111111 has seven 1’s (odd, parity is 1).
The statement

parityValue "= X & 1
is a shorthand for
parityValue = parityValue * (X & 1)

where & is the bitwise AND operator and * is the bitwise XOR operator. More
specifically, let X = (Xg3Xe2.--Xo)2 and Y = (Yg3X62...Y0)2, we have
X &Y = (X63 A Y63’X62 A Y62’ .. 'XO A Y0)2 and X N Y = (X63 @ Y637
Xoo D Yoo, - - -Xo P Yo)».The expression (X & 1) clears all bits of X but keeps the
rightmost bit intact, that is, X & 1 = (00...00X,),. The expression parityValue *
(X & 1) computes (the current parityValue) €p (last bit of X). Finally, the statement
X = X >> 1 right shifts X one bit, for the next iteration. That is, X >> 1=
(0X¢3Xe>- - - X-X;) (Fig. 3.1).

Example 3.9. Program to Hide a Character in a Byte Array

In the Text Hider project, students are asked to hide a text file in an image file. This
example does a much simpler task of hiding an ASCII character ‘K’ in a byte array
A=[11010001, 11001001, 11011010, 11011010] = [D1, C9, DA, DA]. The pro-
gram replace.go in Fig. 3.2 does this by replacing the least significant two bits of the
four elements of array A, with the eight bits of character ‘K’. Every element A
[i] hides two bits of ‘K’, as the following table shows (Table 3.9).
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import "fmt"

}

)
a:=63
a=127

}

package main
func parity(X int) int {
parityValue := 0
fori :=0; i<64; i++ {
parityValue "= X & 1
X=X>>1
return parityValue
func main() {

fmt.Println(parity(a))

fmt.PrintIn(parity(a))

/I X is a 64-bit integer
// parityValue = parityValue * (X & 1)
// shift X right one bit

/163 =00111111 has six 1's

// 127 =01111111 has seven 1's

(a) Source code of program parity.go

0
1
>

> go run parity.go

(b) Running parity.go to produce the output

Fig. 3.1 Using parity.go to illustrate logic and shift operations

The program uses tab \t to align the two lines of printing outputs, to better see the
changes made to the last two bits of the array elements. The main work is done in the
for loop, which iterates over the four elements A[0] to A[3], with the index values
changing from i=0, 1, 2, to 3. We only need to look at the detailed case when i=0.
The other cases are similar. When i=0, we have data="K'=01001011 and A[i]=A
[0]= 11010001. The results of the loop body are shown below step-by-step.

v :=data & 0x3

A[i] =A[i] & OxFC

Ali] =A[i] | v

data =data >> 2

v= 01001011 & 00000011 =00000011

// retain rightmost 2 bits of 'K'

Ali]= 11010001 & 11111100 =11010000

// clear rightmost 2 bits of A[1i]

A[il= 11010000 | 00000011 =11010011
// set last 2 bits of A[i] with those of 'K'
data= 00010010

// shift 'K' 2 bits to the right
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package main
import "fmt"
func main() {
A := [4]byte{0xD1,0xC9,0xDA,0xDA }
fmt.Printf("Before: \tA = [%b %b %b %b]\n",A[0],A[1],A[2],A[3])
data := byte('K")
fori:=0;i<len(A); i++ {

v :=data & 0x3 // retain last 2 bits of 'K'

Ali] = A[i] & OxFC // clear last 2 bits of A[i]

Ali]l = Afi] v // set last 2 bits of A[i] with those of 'K'
data = data >>2 /I repeat with the next 2 bits of 'K'

}
fmt.Printf(" After: \AtA = [%Db %b %b %b\n",A[0LA[1],A[2],A[3])
}

(a) Source code of program replace.go.

> go run replace.go

Before: A =[11010001 11001001 11011010 11011010]
After: A =[11010011 11001010 11011000 11011001]
>

(b) Running replace.go to produce the output

Fig. 3.2 Using replace.go to illustrate logic and shift operations

Table 3.9 Values of ele-

; A bef d Array element Before After
ments of array A betore and 7,y 11010001 11010011
after replacing the least sig-
nificant two bits with charac- Al 11001001 11001010
ter ‘K> =75 = 01001011 A2] 11011010 11011000
A[3] 11011010 11011001

3.1.2 Predicative Logic

Predicative logic is also called first-order logic. It contains propositional logic as well
as predicates and quantifiers. Predicative logic has more expressive power than
propositional logic. That is, predicative logic can be used to rigorously express
some logic statements which ppositional logic cannot do.

3.1.2.1 Predicate and Quantifier

A predicate can be viewed as a proposition with one or more input variables. A
predicate takes an entity or entities as input variables to produce an output of either
True or False value. For instance, consider the two sentences “Socrates is a philos-

opher” and “Plato is a philosopher”. In propositional logic, these sentences are
viewed as being unrelated and may be denoted, for example, by propositional
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variables p and g. However, in predicative logic, we can use predicate Phil(x) to
represent “x. is a philosopher”, where x is an input variable. Thus, if “a” represents
“Socrates”, then Phil(a) means “Socrates is a philosopher”. Phil(x) is a predicate
with one input variable x. Phil(a) is a predicate with the input variable x instantiated
with the entity constant a.

There are two quantifiers in predicative logic. The universal quantifier ¥V means

“for all”, “for any”, “for every”. The existential quantifier 3 means “there exists”.
For instance, we can have the following statements and their expressions.

All philosophers are mortals. Vx [Phil(x)—Mortal(x)].
Socrates is a philosopher. Phil(a).

Socrates is a mortal. Mortal(a).

There exists a philosopher. dx [Phil(x)].

In predicative logic, we need to pay attention to the quantifies about their domain,
order and use with negation, as illustrated by the following example.

Example 3.10. Domain, Order, and Negation When Using Quantifiers
Consider the mathematical statement: for any natural number 7, either # is an even
number, or n+1 is an even number. This statement expressed in natural language can
be more concisely and precisely expressed in predicative logic as

Vn [Even(n) V Even(n + 1)],

where we use predicate Even(n) to mean n is an even number.

However, the above predicative logic expression does not consider “for any
natural number”. This can be compensated by explicitly indicating the domain of
variable n associated with the universal quantifier, and the expression becomes:

Vn € N [Even(n) V Even(n + 1)],
where N represents the set of natural numbers.
In predicative logic, the order of the quantifiers is important. Look at the

following two statements. The first is true while the second is false.

(HvxeN,JyeN@y=x+1) Every natural number has a successor.

2)IyeNVxeN(y=x+1) There is a natural number which is the

successor of all natural numbers.

With negation, we need to differentiate “Not-All” and “All-Not” statements.
More precisely, consider the following two statements.

—(Vx € N [Even(n)]) Not all natural numbers are even.
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Vx € N [-Even(n)]) All natural numbers are not even.
The first statement (Not-All) happens to be true, and the second statement
(All-Not) happens to be false.
Negation with quantifiers satisfies the following negation properties:
—(Ix P(x)) = Vx=P(x), —=(VxP(x)) = Jx=P(x).
For instance, the true statement
—(Vx € N [Even(n)]) Not all natural numbers are even
is equivalent to
Jx € N [-Even(n)] There exists a natural number that is not even.
The false statement
Vx € N [-Even(n)] All natural numbers are not even
is equivalent to
—(3x € N [Even(n)]) There exists no natural number that is even.

The negation properties can be used in cascade. For instance, the statement

—(IyeN,VxeN(y#x+1)) There is no natural number which is

not the successor of any natural number
is equivalent to

Yy € N, Jx
€ N(y=x+1) Any natural number is the successor of some natural number.

This statement is false, as zero is not the successor of any natural number.

3.1.2.2 More Examples of Writing Predicative Logic Expressions

We discuss more examples to show how to write predicate logic expressions. In
particular, we show how natural language statements can be expressed as predicate
logic expressions. The latter can express the statements more rigorously.
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Example 3.11. Representing Infinity
Consider the following statement expressed in natural language:

There exist infinitely many prime numbers.

How to represent this statement as a predicate logic expression?

We use the predicate Prime(m) to represent “m is a prime number”. Now the key
is how to express “infinite”. There are several ways to do it.

The first way is to express “infinite” directly by interpreting it. We convert the
original statement “there exist infinitely many prime numbers” into a more concrete
statement: “for any natural number, these exists some prime number larger than it”.
Since there are infinitely many natural numbers, there are infinitely many prime
numbers.

Then, “there exist infinitely many prime numbers” can be expressed by the
following expression:

Vn e N,dIm € N, [(m > n) A (Prime(m))]

which is a direct rewriting of the more concrete statement.

The second way is to is to express “infinite” as “not finite”. We first write a
statement for “finite”, and then negate it. The following two expressions are exam-
ples of this method. We use the idea: for any finite subset of N, there exists a
maximum number in this subset.

—(3n € N,Vm € N, [(m > n) — —(Prime(m))])
—(3n € N,Vm € N, [(Prime(m)) — (m < n)))

We leave it as an exercise to show that the above two expressions indeed express
the statement “there exist infinitely many prime numbers”.

Example 3.12. Predicate Refinement

We use the predicate Prime(m) to represent “m is a prime number” in the above
example, to obtain the following expression for “there exist infinitely many prime
numbers”:

Vn e N,dm € N, [(m > n) A (Prime(m))]

Let us try to express “prime number”, by refining the predicate Prime(m). From
mathematics, prime numbers are positive integers which have only two factors:
1 and themselves. This definition of prime number is a little bit difficult to express,
because it contains the phrase “have only”. We can use an equivalent but easier-to-
express definition: a prime number is a natural number that cannot be generated by
multiplying other two natural numbers greater than 1. Thus, we have
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Prime(m) = ¥p,q € N,p,q > 1(m # pq).

Here, p, q € N, p, q > 1 is the domain of variable p, ¢. Intuitively, the above
equation says that m is a prime number if m is not the product of two natural numbers
p and g which are both greater than 1.

We can directly substitute Prime(r) in the original expression:

VneN,Im e N,[(m > n) A (Vp,q € N,p,q > 1(m # pq))].
But usually, we write all quantifiers in front of the expression. Thus, we have:
Vne N, dm € N,Vp,q € N,p,q > 1[(m > n) A (m # pq)].

Here, we emphasize again the importance of the order of the quantifiers. Consider
the following two expressions

Vne N,Vp,q € N,p,q>1,3m € N [(m > n) A (m # pq)]
and
dm e N,Vn € N,Vp,g € N,p, g > 1[(m > n) A (m # pq)].

Neither expression is equivalent to the statement “there exist infinitely many
prime numbers”.
Now consider another related logic statement called the twin prime conjecture:

There are an infinite number of twin prime pairs.

How can we represent this statement as a predicate logic expression? The key
here is what is “twin prime pair”’. Twin primes (or a twin prime pair) are two prime
numbers with a difference of 2. For instance, 5 and 7 form a twin prime pair, so do
11 and 13. Adding this definition to the original expression for infinite prime
numbers, we have a predicate logic expression for the twin prime conjecture as
follows:

VneN,Im € N,Vp,q € N,p,qg > 1[(m > n) A (m # pq) N (m + 2 # pq)].

Example 3.13. Representing Potentially Unbounded Process
Let us consider the following statement called the Collatz conjecture, which is a
logic statement involving a potentially unbounded process.

For any positive integer n, multiply n by 3 and add 1 if n is odd, and divide n by 2 if n is even.
Repeat this process and you will always get 1.
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For example, for n = 15, the above process become 15 — 46 — 23 — 70 —
35 - 106 — 53 —-170 — 85 — 256 — 128 - 64 —»32 - 16 -8 -4 —» 2 —
1. After 17 steps, the process converges to 1.

We use f(n) to represent one step for integer n, and use "™ (n) to represent the
m times composition of function f; that is, f (f (-*-f (n)---)). The Collatz conjecture
can be expressed by the following predicate logic expression:

3n+1,if n =1 (mod 2);

) (1) = =
Vn,ﬂm,{f (n)—l}’wheref(”)—{n/z, if n=0 (mod 2).

At present, this conjecture has not yet been solved.

3.1.2.3 Inference Rules and Axiomatic Systems in Boolean Logic

We have implicitly used axioms and inference rules from school logic in under-
standing the material of Boolean logic. On the other hand, we also point out that
Boolean algebra is different from school algebra. This seemingly contradiction raises
a question: is logic thinking different in computer science from that in ordinary
mathematics? How to rigorously specify the difference?

Normally, logic thinking in computer science is the same as that in ordinary
mathematics. More specifically, we can use a mathematic method called axiomatic
systems to specify any particular logic system. An axiomatic system is built from
three components: (1) a set of elements and operators on these elements, (2) a set of
axioms, i.e., given properties about the elements and operators; and (3) a set of
inference rules to derive new properties from known properties.

To rigorously specify a logic system in computer science, such as Boolean logic,
that is different from ordinary school mathematics, we explicitly specify different
operators and axioms but normally use the same inference rules of mathematics.
For instance, comparing to algebra in high school mathematics, Boolean logic
introduces a new NOT operator. In addition, as shown in Table 3.2, Boolean logic
introduces three new axioms (the idempotence, the absorption, and the complemen-
tation laws) and changes the distributivity and the annihilator laws.

We explicitly list three sets of commonly used inference rules in Box 3.2. They
are all inference rules of ordinary mathematics, and can be used to infer a statement
(conclusion), given one or more statements (premises).
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Box 3.2. Several Commonly Used Inference Rules
Modus Ponens:

Given X—=Y Every Web page has a URL

X My homepage is a Web page
Conclude Y My homepage has a URL
Modus Tollens:
Given X—=Y Every Web page has a URL

=Y My cellphone does not have a URL
Conclude =X My cellphone is not a Web page

Negating Quantified Predicate:
Given —(3x P(x)) Given VY x — P(x)
Conclude Vx — P(x) Conclude — (Ix P(x))

Given —(Vx P(x)) Given 3 x = P(x)
Conclude dx — P(x) Conclude — (Vx P(x))

3.2 Automata and Turing Machines

When a computational process has a single step, Boolean logic often suffices to
produce correct answer and ensures logic correctness. However, when a computa-
tional process involves multiple steps, we often prefer new models. A key concept is
automata, also known as state machines. An automaton can remember things by
holding states and use state transitions to represent steps.

David Hilbert (1862-1943) put forward a very fundamental and general problem
that requires multi-step computational processes, the Entscheidungsproblem (the
decision problem), i.e., mechanically proving theorems of mathematics. Alan Turing
gave a negative answer to the decision problem, but in the process, proposed Turing
machines, a class of automata that turn out to be able to solve any computable
problems. Turing machines are key milestones and cornerstones of correctness and
generality of computational processes.

Fundamental limitations of computation are also discussed. There exist incom-
putable problems that cannot be solved by any Turing machine. We also have
Godel’s incompleteness theorem: being true and being provable are not the same
thing. In any reasonably sophisticated mathematic system, there are mathematic
theorems which cannot be proven.

3.2.1 Mechanical Theorem Proving

Mechanical theorem proving (also known as automated theorem proving or
computer-assisted proof), requires that in the process of calculation or proof, after
each step, there is a certain rule to choose the next step. Along this path, the process
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will finally reach the required conclusion. In this way, people hope to avoid those
highly skilled mathematical calculations or proofs and replace them with the pow-
erful computing power of modern computers.

The idea of mechanical proof can be traced back to the seventeenth century
French mathematician Rene Descartes (1596-1650). Descartes once had a
great idea: “All problems can be turned into mathematical problems; all mathemat-
ical problems can be turned into algebraic problems; and all algebraic problems can
be turned into solving algebraic equations.” Descartes created analytical geometry,
established the bridge between the spatial form and the quantitative relationship, and
established the framework to solve elementary geometric problems based on alge-
braic methods.

In 1928, David Hilbert stated the problem of mechanical theorem proving more
clearly: given an axiomatic system, is there a mechanical method (now called an
algorithm) that can verify the truth or falsity for every proposition in this system? In
Sect. 3.2.3 we will see that the answer to this Entscheidungsproblem is No.

However, although it is impossible to use an algorithm to determine all the
propositions, it is still feasible to use mechanized methods for specific problems in
specific fields. For example, the elimination method (Wu’s method) based on the
zero-point set of the polynomial system proposed by Professor Wenjun Wu (also
known as Wu Wen-tsiin,) can be applied to the mechanical proof of a large number
of geometric theorems.

The first major theorem proved with the help of computer is the four-color
theorem. This famous four-color theorem in graph theory asserts that any planar
graph can be 4-colored, that is, there is a way to dye each vertex with one of four
colors so that any adjacent vertices do not have the same color. The four-color
theorem was first proposed by Francis Guthrie (1831-1899) in 1852. This problem
puzzled mathematicians for more than a 100 years. It was finally proved by Kenneth
Appel and Wolfgang Haken in 1976 with the help of computer.

The idea of their proof is as follows: if a certain structure appears in the planar
graph, this part can be replaced with a smaller structure (that is, reduce the size of the
original graph), while the 4-colored property is unchanged. That is, if the new graph
can be 4-colored, the original larger graph can also be 4-colored. For example, a
vertex with a degree no greater than 3 can be removed, because it does not affect
whether the whole graph can be colored by 4 colors. Appel and Haken proved that
there are 1936 planar graphs that cannot be reduced to one another. Any other planar
graph can always reach one of these 1936 graphs through the specific process of
reduction. Finally, with the help of the computer, after more than 1000 h of
calculation, they verified that all 1936 graphs can be 4-colored and thus proved the
four-color theorem.
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3.2.2 Automata

When a proof process is viewed as a computational process, it is usually a multistep
process. We start from the axioms or a known true statement (a theorem), and
repetitively apply the inference rules to arrive at new true statements and the final
conclusion. The result of an inference step should be memorized as a state, and used
as part of inputs for future steps. That is, we need a machine that holds states. Such a
machine is called an automaton. We will introduce two classes of automata, namely
finite state automata and Turing machines.

Consider a simple vending machine, which sells bottled water and bagged
biscuits. The price of bottled water is $1 per bottle and the price of biscuits is $2
per bag. The vending machine accepts only $1 or $2 banknotes. In any state, a buyer
can perform one of five actions to the vending machine: (1) insert a $1 banknote,
(2) insert a $2 banknote, (3) press the “Buy water” button, and (4) press the “Buy
biscuits” button, and (5) press the “Get money back™ button.

Initially, the vending machine is in the state g (initial state). If the buyer inserts a
$1 banknote, the vending machine will transfer to a new state g;. If the buyer
chooses to buy bottled water in state g, the vending machine will output one bottle
of water and go back to state g. If the buyer inserts one more $1 banknote in state g,
the vending machine will transfer to a new state g,. If the buyer chooses to buy
something in state g,, the vending machine will output the corresponding goods and
go back to gq (biscuits) or g, (bottled water). If the buyer wants to get the money
back in state g, or g, the vending machine will return the corresponding amount of
money and go back to state go.

Figure 3.3 is called the state-transition diagram, which shows the above state
transition rules of the vending machine. Note that the arrow notation specifies an
input-output pair. “$1—$1” at the arrowed curve in state ¢, denotes “when the buyer
inserts a $1 bill, the machine outputs a $1 bill and stays in state g,.” The notation
“$1—" at the arrowed curve from state ¢ to state ¢, denotes “when the buyer inserts
a $1 bill, the machine outputs nothing and transitions from state g to state ¢;.”

The state-transition diagram can be equivalently written as a state-transition
table in Table 3.10. Note that the state transition diagram happens to omit some
possible transitions, while the state transition table lists all possible transitions.

The above computational model for the vending machine is called a (determin-
istic) finite automaton, also known as a finite-state automaton. It is a model of
computation suitable for computational processes where only finite numbers of
states are involved. A computational process that involves potentially infinite num-
ber of states cannot be modeled by a finite-state automaton. Finite automata cannot
handle infinite states, as shown by the following example.

Example 3.14. Palindromes Cannot Be Recognized by Finite Automata

A palindrome is a character string that is the same when reading backwards. For
instance, 1991 is a palindrome, so is 010011000111000011110000111000110010.
We leave it as an exercise for students to show that palindromes cannot be recog-
nized by finite automata.
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$1—9%1
$2 — §2
Buy biscuits — biscuits
get the money back — $2
$1—| [ Buy water — water
Buy water — water
get the money back — $1
$2 — 82
Fig. 3.3 The state transition diagram for a vending machine
Table 3.10 State transition table of a vending machine
Current state Input Output Next state
90 Insert $1 Null q1
Insert $2 Null q>
Buy water Null q0
Buy biscuits Null q0
Get money back Null q0
q1 Insert $1 Null q>
Insert $2 Output $2 q1
Buy water Output water q0
Buy biscuits Null q1
Get money back Output $1 90
e Insert $1 Output $1 9
Insert $2 Output $2 9
Buy water Output water q1
Buy biscuits Output biscuits q0
Get money back Output $2 9o

3.2.3 Computation on Turing Machine

What is computable? Alan Turing gave a rigorous definition in his famous paper in
1936. His idea is that all the infinite mathematical entities, such as numbers, vari-
ables, functions and predicates, can be mapped to the infinite set of real numbers. A
mathematical entity is computable if its corresponding real number is computable.
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What is computable is reduced to what real numbers are computable. “The comput-
able numbers [are] the real numbers whose expressions as a decimal are calculable
by finite means.” Another equivalent definition is: “A number is computable if its
decimal can be written down by a machine.”

Example 3.15. The Circular Constant Tt Is Computable

We use 7 to denote the circular constant (the ratio of circumference to diameter of
any circle). It is an irrational number and has infinitely many decimal digits.
Nevertheless, © is computable according to Turing’s definition: & is a real number
whose decimal digits are calculable by finite machines. That is, any sequence of
digits of & that we want can be produced by finite means.

Suppose we want the first 800 digits of . This sequence can be produced by the
following finite means: running the following pi.go program' on a laptop computer.
The program is finite, as it contains 27 lines of code. The computer is finite with 2GB
memory capacity. The running time is finite, as executing the pi.go program
consumes less than 1s. The entire execution process is automatic.

package main
import "fmt"
func main() {
var r [2801]int
var i, k, b, dint

c:=0
fori=0; i<2800; i++ {
r[i] =2000
1
fork =2800; k>0; k-=14 {
d=0
i=k
for;;{
d+=r[i] * 10000
b=2%*1-1
r(il =d%b
d/=b

io-
if i == 0 {break}
d*=1
}
fmt.Printf ("%.44", c+d / 10000)
c=d%10000

"This pi.go program is rewritten into Go code from a 160-character C program written by Dik
T. Winter of the Centrum Wiskunde & Informatica (CWI) in the Netherlands. Dr. Ben Lynn of
Stanford University analyzed the C code. Please see his analysis note at https://crypto.stanford.edu/
pbc/notes/pi/code.html.


https://crypto.stanford.edu/pbc/notes/pi/code.html
https://crypto.stanford.edu/pbc/notes/pi/code.html
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The program pi.go produces the first 800 decimal digits of x:

314159265358979323846264338327950288419716939937510582097494
4592305218781640628620899862803482534211706798214808651328230
66470938446095564230582231725359408128481117450284102701938
52110555964462294895493038841519644288109756659334461284756482
337867831652712019091456485669234687580348610454326648213393607
260249141273724587006606315588174881520923797096282925409171536
436789259036001133053054882046652138414695194151706416094330572
703657595919530921861173819326117931051185480744623799624232749
567351885752724891227938183011949129833673362440656643086021390
373494639522473719070217986094370277053921717629317675238467481
846766091940513200056812714526356082778577134275778960917363717
872146844090612249534301465495853710507922796892589235420199561
121290219608640344181598136297747713099605187072113499999983729
780499510597317328160963185

In his 1936 paper “On Computable Numbers, with an Application to the
Entscheidungsproblem”, Alan Turing described an abstract computer which was
later called a Turing machine. Turing machines are a more powerful model of
computation than finite automata.

The organization of a Turing machine is shown in Fig. 3.4. At a minimum, a
Turing machine is comprised of three components: (1) an infinite tape, (2) a read/
write head, and (3) a finite state-transition diagram in a finite state controller.

The tape has infinitely many squares (cells) extending to both directions. Each
square contains a symbol, such as 0, 1 and blank. The blank symbol can be written
explicitly as B to avoid confusion.

Initially, the tape contains the input string between two blanks. All other squares
are blank. The head points to the first input symbol (or to the blank square left of the
first input symbol). The state-transition table resides in the finite state controller.

The state-transition diagram or the equivalent state transition table governs the
behavior of a Turing machine, as illustrated in Fig. 3.4 and Table 3.11. This
particular Turing machine does a cleanup. It scans the input string from left to
right, erases each 0 or 1 (replacing O or 1 by blank B), and stops when reads a @.

The machine starts at initial state g, and stops at final state g;. Sometimes we
explicitly name the final state g, as Halt, when there is just one final state. At each
step, the head reads the symbol in the pointed square, writes an appropriate symbol,
and moves the head to left or right, and then the machine transition to the next state.

Definition: A Turing machine is a 7-tuple M = {Q, Z,T", 6, Go, Gaccept> GReject }-

e () is a finite, non-empty set of states.

e X is a finite, non-empty set of input symbols.

¢ T'is afinite, non-empty set of tape symbols. There is a special character B € I" for
the blank symbol. We require B¢ X and X C T.

* 0:(0Q — {gaccept> Greject) X =0 x I' x {—, +} is the transition function.

* go € Q is the initial state.



110 3 Logic Thinking

Finite
State
Controller

!

B|oO|O[O|]O|1l]|O]|1l]|@|B

Fig. 3.4 Organization of a Turing machine, with a cleanup function example

Table 3.11 State transition table of a Turing machine

Current state Symbol read Symbol to write Head move Next state
40 0 B - 40

9o 1 B - 90

90 @ B — g (Halt)

Gaccept € Q is the accept state.
* greject € Q is the reject state.

To make the definition concrete, let us review again the cleanup Turing machine
illustrated in Fig. 3.4 and Table 3.11. For this machine, QO = {g¢, ¢}, X = {0, 1, @},
I'={0,1, @ ,B}. The initial state is go. The accept state is g, which means the
machine successfully finishes the cleanup process. There is no reject state. The
transition function § is illustrated in Fig. 3.4 and Table 3.11.

If we look at the transition function more carefully, we may find that there is no
definition of 8(go, B). When the computational task to erase the input string ends with
the symbol @, it is impossible to read B in state g,. However, it is always useful to
write down the rule for all cases in order to handle exceptional conditions. One
possible way to handle it is to set 6(go, B) = (q2, B, —) where g5 is the reject state.
This means if the end of the input is not @, the Turing machine will go to the reject
state ¢, and stop.

Example 3.16. Palindromes Can Be Recognized by a Turing Machine

In Example 3.14, we claim that Palindromes cannot be recognized by finite autom-
ata. Here, we show it can be recognized by a Turing machine. Thus, Turing
machines are more powerful than finite automata.

The Turing machine starts at state g, with the input string on the tape, enclosed
between two blank squares. The machine has two final states. When the input string
is not a palindrome, the machine eventually stops at state ggreject> and outputs a O on
the tape. When the input string is a palindrome, the machine eventually stops at state
g Accept- and outputs a 1 on the tape.

The input alphabet contains only two symbols: 0 and 1. The tape alphabet
contains an additional symbol: the blank symbol B. The state transition table is
shown in Table 3.12. Note that there are nine states, but only seven states trigger
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Table 3.12 State transition table for a Turing machine to recognize any palindrome

Transition Current state Symbol read Symbol to write Head move Next state
1 90 0 B - gSeen0

2 90 1 B - qseent

3 90 B 1 — q Accept

4 4Seen0 0 0 - qSeen0

5 4Seen0 1 1 - 4Seen0

6 dSeen0 B B - qWant0

7 gSeent 0 0 - gSeent

3 dseenl 1 1 - qSeenl

9 gSeenl B B - dWantl

10 gwant0 0 B - 4dBack

11 4 want0 1 B - 9BackErase
12 gwant0 B 1 — 4 Accept
13 gwantl 0 B . dBackErase
14 dwantl 1 B — dBack

15 qwantl B 1 — q Accept
16 dBack 0 0 - 4dBack

17 dBack 1 1 — dBack

18 gBack B B — q0

19 qBackErase 0 B — dBackErase
20 4dBackErase 1 B — 9dBackErase
21 4dBackErase B 0 — qReject

state transitions. The machine stops when it enters any of the two final states. A final
state does not trigger a state transition. In each of the seven states, the head may read
one of three tape symbols 0, 1, or B. There are 3x7=21 transitions in Table 3.12.
Figure 3.5 shows initial and final configurations of a Turing machine for recog-
nizing palindromes, i.e., decides whether a string is a palindrome.
How does this Turing machine work? The basic idea is as follows.

 Iterate over the given the input string.

*  When the first symbol and the last symbol match (they are both O or both 1), erase
them and go to the next iteration.

* When the first symbol and the last symbol do not match, erase the remaining
string and enter greject-

* Until all symbols of the input string are all erased, then enter gaccept-

For instance, consider the input string 001010, which is not a palindrome. The
tape configurations of the iterations are shown below:

 [Iteration 1:
...BO01010B. . .; first and last symbols match, erase the two symbols and go to
next iteration

* Iteration 2:
...BB0101BB. . .; first and last symbols do not match, reject.
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Initial configuration:
Input string 001010 is enclosed in two
blanks, which is not a palindrome

B|O|O|]1T|O0O]|1|O0]|B

qRejecl

Final configuration:
‘ Reject, output 0

B|B|O|B|B|B|B|B

(a)
9o Initial configuration:
Input string 00100 is enclosed in two
‘ blanks, which is a palindrome
B|O|[O|1]O]|O|B
chcept
Final configuration:
7777777777777 Accept, output 1
B|B|1|B|B|B|B
(b)

Fig. 3.5 Initial and final configurations of a Turing machine for palindrome recognition. (a) When
the input string is 001010. (b) When the input string is 00100

Now, consider the input string 00100, which is a palindrome. The tape configu-

rations of the iterations are shown below:

Iteration 1:

...BO0O100B. . .; first and last match, erase and go to next iteration

Iteration 2:

...BBO10BB. . .; first and last match, erase and go to next iteration

Iteration 3:

...BBB1BBB. . .; one symbol matches itself, erase it and go to next iteration
Iteration 4:

...BBBBBBB. . .; all symbols erased, output 1 and enter gaccept-

Final result .. . BBBIBBBB. ..
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Applying the Turing machine definition to the palindrome-recognition problem,
we have the following rigorous and concrete definition: a Turing machine recogniz-
ing palindromes is a 7-tuple M = {Q, Z,T, 6, g0, G accepts GReject }» Where

Q = {6]07 chcepb qReject; qSeen0s dSeenl> Want0> YWantl> dBacks qBackErase}’ the three
states before the semicolon are special states common to many Turing machines:

qo € Q is the initial state, gaccept € Q is the accept state, and greject € Q is the
reject state.

e The input alphabet is £ = {0, 1}.

e The tape alphabetisI' = {0, 1, B}.

* The transition function 6 : (Q — {gaccepts Reject) X [=0 X I' X {—, 1} is
defined by Table 3.12.

The machine starts at go, with the head points to the leftmost symbol of the input
string. When a O or 1 is read, the head writes a blank to the pointed square and moves
to the right, and the machine transition to state g¢seeno O gseen; Which means the
machine has seen a 0 or a 1. In such a state, the machine moves the head to the right,
until it reads a B, indicating that the head has just passed the rightmost symbol (the
end of the string). The machine then transitions to state gwanwo OF Gwant1, indicating
the machine is expecting a 0 or 1 from the end of the string, to match the O or 1 seen.
If the head reads a matching O or 1 in gwanw OF Gwant1, the machine erases it by
writing a B and enters state gg,cx, to go back to the beginning of the string and start
the next iteration. If the head reads a mismatching symbol, e.g., reading a 1 in state
gwanto, the machine enters ggackErse tO erase all remaining input symbols, and then
ENLETS GRrejece and halts. If the head reads a B in gwanwo O gwant1» the machine has
erased all matching 0’s and 1’s, thus the machine enters state gaccepe and halts

Note that in designing the state transition table, cares must be taken to ensure
correct output, that is, a 1 is written on the tape when entering gaccep, and a 0 is
written on the tape when entering greject-

Let us go through the step-by-step details of two small cases, for input strings
01 and 010, to verify the correctness of the Turing machine shown in Table 3.12.

For input string 01, which is not a palindrome, the sequence of transitions is
shown in the following table, where each transition is a step in the computational
process of deciding whether the input string is a palindrome. For each step, we list
the tape contents before and after the transition, where the boldfaced symbol
indicates the position of the read/write head. Before step 1, the tape contains BO1B
and the head points to the square containing 0. The machine is at the initial state g,
which triggers transition #1 in Table 3.12. After the transition, the symbol 0 is erased
and the head moves right to point to the square containing 1.

Step Before Transition After

1 BO1B <#1, qo, 0, B, =, gseen0™ BB1B
2 BB1B <#35, gseenos 1, 1, =, gseeno™ BBIB
3 BBIB < #6, gseenos B: B, — , Gwanto> BB1B
4 BBI1B <#11, gwanos 1, B, “— , qBackErase™ BBBB
5 BBBB <#21, qpackErases Bs 0, — , qrejec™ BOBB
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For input string 101, which is a palindrome, the sequence of transitions is shown
in the following table.

Step Before Transition After

1 B101B <#2,qo, 1, B, =, Gseent> BBO1B
2 BBO01B <#7, gseent» 0, 0, =, Gseen1> BB01B
3 BB01B <#8, gseents 15 1, =, gseen1> BB01B
4 BBOIB <#9, gseent» B, B, — , Gwant1> BB01B
5 BBO01B <#14, gwantts L, B, — , qpaci> BBOBB
6 BBOBB <#16, gpacic 0, 0, — , Gpacic> BBOBB
7 BBOBB < #18, gpacks B, B, —, qo> BB0OBB
8 BBOBB <#1, qo, 0, B, =, gseeno™> BBBBB
9 BBBBB <#6, gseenos B, B, — , Gwanio> BBBBB
10 BBBBB <#12, Gwanior B, 1, 5 Gaceep™ BB1BB

3.2.3.1 Notable Details of Turing Machine

When learning Turing machines, students may experience several difficulties regard-
ing details, which are summarized below.

Finite states. Any Turing machine has a finite number of states. Let us look at
Table 3.12 again. The input string of palindrome can be of arbitrary length. How-
ever, the Turing machine has only 9 states. The same state transition table of 21 rows
is used for input string of arbitrary length. It is a mistake to design a state transition
table that depends on the length of the input string.

B ¢ X and B € T'. The input blank symbol B belongs to the tape alphabet but does
not belong to the input alphabet. It is a mistake to confuse the blank symbol B with
the capital letter B (0x42), the ASCII Space symbol (0x20), or the ASCII Null
symbol (0x00). When the input string needs to contain such symbols, we can change
the blank symbol notation to a new symbol such as . Also note that the read/write
head points to a tape square, which contains a symbol in the tape alphabet, including
all input symbols and the blank symbol.

No stop in the middle. The Turing machine stops (halts) only when it enters a
final state, either gaccept OF greject- 1f it is at a non-final state, a transition will always
be triggered and the machine will enter the next state, which could be the same state
as the current one. However, the machine will never stop at a non-final state. The
reason is that by the Turing machine definition, the transition function 6 is a
mathematical function, which means that 6 is defined for every element
of (O — {gAccept> dreject}) X I'. That is, for every non-final state s and tape symbol
t, 8(s,f) is always defined, and there is always a next state to transition to.

To design a Turing machine for some specific computing problem, it is usually
more intuitive for the novice to draw state-transition diagram, e.g., Fig. 3.4. How-
ever, one drawback of state-transition diagram is that it is easy to leave some 6(s,f)
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undefined. Though some transition seems impossible in the normal case, it is a good
habit to write down the full transition function so as to handle the exceptional
situations.

(191 — 2) x II'l transitions. It follows from the above discussion that the state
transition table of a Turing machine will always have (IQl — 2) x II'l rows of
transitions, where |0l is number of elements of set Q. The value 2 is for the two
final states gaccept aNd Greject- FOr €xample, the Turing machine in Table 3.12 has
9 states and its tape alphabet I" has 3 elements. Thus, its state transition table has
(9-2)x3=21 rows. Note that, the calculation only works if both accept state and
reject state exist in the Turing machine.

Explicit and implicit input/output. For any Turing machine, the input string
must explicitly appear in the tape between two blanks, before any step of state
transition happens. The output of the computation is often defined as the string
between the head-pointed square and the first blank right of it. Sometimes, we more
carefully and explicitly define the output. For instance, in Example 3.16, we define
the output to be a single-symbol string 1 for gaccep» and string 0 for greject-

One may also simplify the situation by doing the computation without cleanup,
but assuming implicit output instead. In such a case, the output string may be mixed
with a subset of symbols of input strings and intermediate results.

3.3 Power and Limitation of Computing

Real world problems can be either abstract (e.g., mathematic problems) or concrete
(e.g., the problem of searching the Web). These problems can be formulated as
computational problems for Turing machines.

Most of the problems one can imagine can be solved by Turing machines. For
example, adding two integers, deciding whether an integer is a prime number,
finding the most economic routes for a traveling salesman, etc. However, there
exist problems that cannot be computed by any Turing machine. Some problems
cannot even be effectively expressed for a Turing machine to solve. The computer
science field has encountered paradoxes, incomputable problems, and incomplete-
ness results. Computability is the subfield of computer science that studies the
power and limitation of computers.

The existence of incomputable problems seems to be a negative fact. However,
people have found ways to exploit such negative results for positive benefits. The
following are some examples of ideas:

* Incomputable problems provide opportunities for human intelligence.

* Computationally hard problems can be used to design computer and Internet
games.

o If a privacy protection technique can be formulated as incomputable problems,
one cannot use computers alone to break privacy protection.
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* In his recent book Life after Google: The Fall of Big Data and the Rise of the
Blockchain Economy, the futurist and industry analyst George Gilder suggests
that incomputability results by Kurt Gédel and Alan Turing provide a founda-
tional piece for future technology systems.

3.3.1 Church-Turing Hypothesis

We have an important positive result called Church-Turing Thesis, due to Alonzo
Church (1903-1995) and Alan Turing (1912—-1954). Because it is actually a hypoth-
esis, not a fully proven statement, it is also called Church-Turing Hypothesis. The
thesis says that no reasonable abstract computer is more powerful than Turing
machines. More specifically, we have the following results.

A problem is Turing computable, if there is a Turing machine that correctly
solves the problem. That is, for any given input string, the Turing machine starting at
the initial state g, will correctly stop at gaccept OF GRreject-

We say a problem is a computable problem, if it is Turing computable. In other
words, Turing machines are a general-purpose model for computability. If a problem
is Turing incomputable, no other reasonable abstract computer can solve the prob-
lem, either. The generality statement that

Computable = Turing computable

can be viewed as a definition supported by many proven results.

Church-Turing Thesis: Assume a reasonable abstract computer X is given. Any
problem computable in X is also Turing computable.

We say X is reducible to Turing machines. Church, Turing and other scholars
have proven that many powerful models of computation are reducible to Turing
machines. Their main method is to treat a problem as a mathematical function and
simulate a step of abstract computer X by Turing machine steps.

A more recent result is the so-called Polynomial Church-Turing Thesis: If a
problem is computable in abstract computer X and costs 7 steps, it is computable
in a Turing machine and costs 7, steps, such that 7, =poly(n, T,). Here, n is the
problem size. Intuitively, the thesis means that the Turing machine is at most
polynomial times slower.

Consider the von Neumann model introduced in Chap. 2, which is a model of real
computers such as a laptop computer. The von Neumann model can be augmented
with infinite memory to obtain this result: Turing machines are as powerful as a
von Neumann computer with infinite memory and arithmetic, logic, load, store,
and conditional jump instructions. They can simulate each other with an overhead of
no more than n*.
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Table 3.13 State transition table of a Turing machine

Current state Symbol read Symbol to write Head move Next state
9o 0 B - 90

90 1 B - 4o

90 @ B - ¢, (Halt)
90 B B - 90

3.3.2 (***) Incomputable Problems and Paradoxes

Computer science research also produced some seemingly negative results of com-
putability. We discuss two such incomputable problems.

The halting problem. Given the description of an arbitrary Turing machine
M and an input string x, decide whether M will terminate or run forever. “Turing
machine terminates” means it eventually enters the accept state or the reject state.

The Entscheidungsproblem (the decision problem). Given a real number,
decide if it is Turing computable. That is, if there is a Turing machine which can
write down arbitrarily long decimal digits of the real number. If one wants » digits,
for any n, the Turing machine will output the correct n digits and stop.

In this section, we show why the halting problem is not computable in Turing
machine, and leave the Entscheidungsproblem as a thinking problem.

Example 3.17. The Halting Problem Is Not Turing Computable

We firstly give an example to show the case where a Turing machine may not
terminate for some input string. Let us modify the machine in Fig. 3.4 and Table 3.11
a little bit. See Table 3.13 for the modified description of the state transition.

In this Turing machine, if the input string is 0000101 @ as illustrated in Fig. 3.4,
the machine will terminate in the halt state after reading the symbol @. However, if
the input string is 0000101, the machine will never terminate and be stuck in state gj,.
Thus, for the halting problem, if the input is this Turing machine and input string
0000101 @, the answer should be “YES” or 1; while if the input string is 0000101,
the answer should be “NO” or 0.

Before discussing the halting problem, let us first look at the representation of
Turing machine more carefully. Any Turing machine can be represented by a 7-tuple
M= {0,%.T, 6, g0, GAccept> dReject }» SO it can be represented by a finite binary string.
For example, we can write down the Turing machine in the normal way, like Q={q0,
ql,q2}, and then translate it to ASCII code which is a finite binary string. Note, in
such representation, not every finite binary string corresponds to a Turing machine,
but it is easy to design a Turing machine which can decide whether a finite binary
string corresponds to a Turing machine or not.

Thus, the set of all Turing machines is a subset of the set of all finite binary
strings. This means the set of all Turing machines is countable. So is the set of all
possible input strings.

We will prove the halting problem is not Turing computable by contradiction.
Suppose there exists some Turing machine H which can compute halting problem.
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= = O R O = O 6
= = O O O = O O

Fig. 3.6 Illustration of the halting problem

That is, for any Turing machine M, and for any input string x, H(M, x) = 1 or stops in
the accept state if Turing machine M will terminate with the input string x; and H(M,
x) = 0 or stops in the reject state if Turing machine M will never terminate (run
forever) with the input string x. Thus H actually computes the following matrix in
Fig. 3.6.

In this matrix, the i-th row represents the Turing machine whose binary repre-
sentation is 7, and the j-th column represents the input string j. If the Turing machine
i can terminate with the input string j, the element of i-th row and j-th column in the
matrix is 1; and if the Turing machine i cannot terminate with the input string j, the
element of i-th row and j-th column in the matrix is 0. For some binary representation
i, if there is no Turing machine corresponding to i, we set the i-th row to be all
1. Note that, in this matrix, we can list all possible Turing machines and all possible
input strings. Of course, the matrix is infinitely large, with infinite number of rows
and columns. But the number of rows and columns are both countable since the
number of Turing machines and input strings are countable. Thus, the function of
Turing machine H is actually to compute such a matrix.

Now, let us define a new Turing machine G based on H as follows (Fig. 3.7).

Since H exists, we can construct such Turing machine G. Now let us consider the
case when the input string is G, the binary representation of the Turing machine G.
For simplicity, we will use G to indicate both the Turing machine and its binary
representation.
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Turing machine G
Input string: binary string i
Run H(i, i);
IfH(i,i) =0,
Then, go to the accept state and halt
Otherwise, run forever

Fig. 3.7 The definition of Turing machine G

Consider the element in the G-th row and G-th column in the matrix in Fig 3.6. If
the element is 1, it means two things: (1) when the Turing machine G takes the input
string G, it should halt after finite steps. This is due to the definition of the matrix.
(2) H(G, G) = 1 due to the definition of H. However, examine the definition of G, we
know when it takes input string G, it will run H(G, G). Since H(G, G) = 1, the Turing
machine G will run forever and never halt. Contradiction.

The other case is similar. If the element in the G-th row and G-th column in the
matrix in Fig. 3.6 is 0, it also means two things: (1) when the Turing machine G takes
the input string G, it should run forever. This is due to the definition of the matrix.
(2) H(G, G) = 0 due to the definition of H. However, examine the definition of G, we
know when it takes input string G, it will run H(G, G). Since H(G, G) = 0, the Turing
machine G will go to the accept state and halt. Contradiction again.

The element must take O or 1, and both cases will lead to contradiction. Thus, the
assumption we made is not true. That is, there does not exist some Turing machine
H which can compute the halting problem. Equivalently, the halting problem is not
Turing computable.

One might think that the reason incomputable problems exist is because Turing
machines are not powerful enough. There may exist other more powerful computa-
tional model which might be able to solve the halting problem or the decision
problem. However, Church-Turing Hypothesis tells us this is not the case. From
this viewpoint, Church-Turing Hypothesis is a negative result.

Some problems cannot even be effectively expressed as computational problems
for Boolean logic or Turing machines to solve. A class of such problems are called
paradoxes. We discuss two paradoxes below. The two cases involve self-reference
and self-contradiction.

When encoding a real-world problem into the cyberspace, we need to be aware of
paradoxes. We often need to change the problem specification to avoid any paradox.
Sometimes, we can utilize paradox to create new functionality. An example of
utilizing self-reference will be discussed in Sect. 5.3.2.

The liar paradox. When a liar says “This sentence is false”, is he telling the
truth? Remember the impatient guide problem in Examples 3.2 and 3.17. Suppose
the guide comes from the Lying Village and makes the statement “What I am saying
is false.” Is the guide lying or not?
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Such paradoxes contain a strange expression when expressed in Boolean logic.
Let X stands for X=false. Sometimes we denote this naming as X: X=false. Now, is
X true or false?

More generally, we may define Boolean variables using self-referencing expres-
sions. An example is a pair of self-referencing expressions Q = Q + S and Q0 =
O +R. In Sect. 5.3.2, we will see that these expressions with feedbacks are partial
specification of the S-R latch, a new functionality to represent states. The contradic-
tion is reconciled, when Q before and Q after the equality sign represent the next
state and the current state, respectively.

The barber paradox. There is only one barber in a village who shaves all in the
village who do not shave themselves. Does the barber shave himself?

A mathematic version of the barber paradox is Russell’s paradox discovered by
British scholar Bertrand Russell. In set theory, Russell’s paradox considers the set
R of all sets that are not members of themselves. Is R a member of itself? If we
answer Yes (R is a member of itself), by the definition of R, R is NOT a member of
itself. If we answer No (R is not a member of itself), by the definition of R, R must be
a member of itself, since R is the set of all sets that are not members of themselves.
Thus, whether we answer Yes or No, a contradiction will be the result.

Russell’s paradox has contributed to the foundation of mathematics. In particular,
it stimulated the creation of modern set theory (Zermelo—Fraenkel set theory), which
is also a foundation of modern computer science.

3.3.3 (¥*%) Godel’s Incompleteness Theorems

In 1928, David Hilbert proposed a suggestion for the solution to the foundational
crisis of mathematics: to establish a set of axiom systems so that all mathematical
propositions can be shown to be true or false in this system within a limited number
of steps. The system Hilbert envisioned needs to answer the following questions:

¢ Completeness: for each of the true mathematical statements, we should be able to
give a proof in this system.

* Consistency: there is no contradiction in the system, that is, there will be no
statement that we can prove to be true and to be false in the same system.

* Decidability: we can find a way to determine whether a mathematical statement
is true or false through only “mechanized” deduction.

For the general decidability question, i.e., the Entscheidungsproblem (the deci-
sion problem), Alan Turing’s 1936 paper gave a negative answer.

How about the completeness and the consistency questions? In 1931, only 3 years
after Hilbert’s suggestion, Kurt Godel (1906-1978) gave negative answers to these
questions. The negative answers are called Godel’s incompleteness theorems.

Godel’s first incompleteness theorem: Any mathematical system that includes
elementary number theory (natural numbers, addition, and multiplication) cannot
have completeness and consistency at the same time.
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Usually, researchers choose to sacrifice completeness in this dilemma. That is to
say, for any reasonably sophisticated mathematical system, there exists some state-
ment that is true, but we cannot prove it in this system. Some researchers have
suggested that the “Goldbach’s conjecture” may be the case. Here “reasonably
sophisticated” means including the elementary number theory known as Peano
Arithmetic shown in Box 3.3.

Box 3.3. Peano’s Axioms of Arithmetic

In 1889, Giuseppe Peano (1858-1932) proposed Peano’s axioms of arith-
metic, later also called Peano Arithmetic for simplicity. This result has been
widely used since then for mathematic logic in general and elementary number
theory in particular. At a minimum, Peano Arithmetic consists of the following
five axioms, and addition and multiplication operators can be defined based on
these axioms.

1. Zero is a natural number; 0 € N.

2. Every natural number has a successor in the set of natural numbers;

Vn € N [S(n) € NJ.

Zero is not the successor of any natural number; Vn € N [S(n) # 0].

4. If the successors of two natural numbers are the same, then the two original
numbers are the same; Vm, n € N [S(m) = S(n)—m = n].

5. If a set contains zero and the successor of every natural number, then the set
contains the set of natural numbers. This is called the induction axiom.

22

Godel’s second incompleteness theorem: For any mathematical system that
includes elementary number theory, if it is consistent, then its consistency cannot be
proved within itself.

In other words, whether there is a paradox in the system cannot be solved by
relying on this system alone.

Godel’s incompleteness theorems deny Hilbert’s proposal. Godel’s first incom-
pleteness theorem tells us that truth and provability are two different things. A
provable statement must be true if we stick to consistency, but a true statement is
not necessarily provable since we sacrifice completeness. Godel’s second incom-
pleteness theorem tells us that consistency cannot be proved within a mathematical
system itself.

Example 3.18. A Case of Godel’s First Incompleteness Theorem
We discuss a specific statement to make our understanding of Godel’s first incom-
pleteness theorem more concrete. The statement is Goodstein theorem, which is true,
but cannot be proven in any mathematical system that includes elementary number
theory.

We first need the concept of a Goodstein sequence.

Given any natural number n, its hereditary base-b representation is obtained as
follows. First, write the sum of power base-b representation of n. If some exponent
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m is greater than b, replace m by m’s own sum of power base-b representation.
Repeat this process until all numbers are less than or equal to .

For instance, given n=266, its base-2 representation is 28 + 23 + 2. There are two
numbers >2, i.e., 8 and 3. Replacing them by their base-2 representations, we have
22’ 4221 4 2 Now we have only one number >2, which is 3. Replacing 3 with its
base-2 representation, we have 22 + 22! 42 This is the hereditary base-2
representation of 266.

The change-of-base function R,(n) changes b to b+1 in n. That is, R,(n) replaces
every b with b+1 in the hereditary base-b representation of n. For instance, for
n=266, the hereditary base-2 representation is 22 02t 4 g, Changing every
occurrence of 2 to 3, we have R,(266) = 33" 4 33+1 1 3 which is in the form of a
hereditary base-3 representation of a much larger number:

R,>(266) = 443426488243037769948249630619149892887.
The Goodstein sequence for a given natural number »n is denoted as (n);, where

k ranges over the set of natural numbers, and the value of each (n), is written as
follows:

(n) _ Reso((n)) =1 if (n), >0
k1 0 £ (), =0

For instance, for n=266, the Goodstein sequence is

(266), = 27" + 21 42 = 266
(266), = 3" + 31 12 ~ 4.4 x 107
(266), = 44" 441 1 ~ 3.2 x 101

A Goodstein sequence has three noteworthy properties:

* To go from one number to the next, two operations are performed. First, apply the
change-of-base function, then subtract 1 from the result. The change-of-base
function seems to significantly increase the number.

* The sequence grows tremendously fast. For instance, going from (266); to (266),,
the number grows to 3.2 x 10°'°. Compare this to the fact that there are only
about 10" basic particles in the observable universe.
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» The striking property is that this quickly growing sequence approaches 0! This is
Goodstein theorem.

Goodstein theorem: Every Goodstein sequence always approaches 0.

That is, for any natural number 7, there exists another natural number m, such that
(n), = 0.

In 1944, Reuben Goodstein proved the Goodstein theorem. In 1982, Laurie Kirby
and Jeff Paris showed that Goodstein theorem cannot be proven in any mathematical
system that includes elementary number theory (i.e., Peano’s Arithmetic).

Let us consider (4);, in more detail, i.e., the Goodstein sequence for number
4. Goodstein’s function G(n) = m is a function that maps n to m, where m is the
smallest natural number such that (n),, = 0. It is known that

G(4) = 3 x 2402659211 _ 3 ~ 6,895 x 10'212106%,

It is impractical to compute all the non-zero items of the sequence. Our TA,
Hongrui Guo, computed the first five, the largest five, and the last five items of the
sequence before it reaches 0. These 15 values are as the following.

(4)g =2

(4), =3

(4),=2x4"+2x4" +2-1=41

(4); =2x5+2x5 +1-1=60
(4),=2x6"+2x6' -1 =2x6"+6+5=283
w2 =2 1st1000DigitsOfMax

w1 ~ 1st1000DigitsOfMax

max = 15t1000DigitsOfMax

max+1 ~ 1st1000DigitsOfMax

max+2 ~ 1st1000DigitsOfMax

n

4
4

o~ o~ o~ —~
— — ~— ~— ~—

The sequence (4), reaches the maximal value at index max. The maximal value is
(@)pax = 3.44754040154631. ... 10212199 Tt is a natural number with 121210695
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decimal digits. The first 1000 decimal digits of the largest numbers in the
sequence are:

34475404015463100828681949798057549784788749379014868294825824
71181371747989862435944126537723138836357706343870670981471373770
12311972582711710423708488689955731916776345646600366175225653655
66707660736638221550278724966252575033308853486678486334114931903
14615269655969736866492160948225290436847365886709876147562092042
0058686649733118291758563321381202195171984182018123353393010562
71348711228774295067529019486998025111083607801145279169927216822
91424810789456193340854410358943085149505243047152149159691566503
1176899651610957212217360780656154707158846933785793375188967822
22962282279777804376115277338671809923516166212703892541980539479
29809819394864855229092228788578838875603483673163812706732806753
47382769219015375432616565108108081814310923711203313305968399971
67695778121779569475400362539158893903885373347987634477272363235
75017620929937195505529441455741049571737770925493092772866804132
38831342452145449516230927445255255771310652274759352993005306606
008562973170880130089684337752.

3.4 Exercises

1. What is NOT a possible truth value of proposition formula P vV Q?

(@0
(b) 1
(c) Either O or 1
(d) Both 0 and 1

2. What is NOT a possible truth value of proposition formula (P V — Q)—P?

(@0
(b) 1
(c) Either O or 1
(d) Both 0 and 1

3. Let the proposition formula G be P—Q. How many assignments of the truth
value to P, Q are there to make G false?

() 1
(b) 2
(© 3
(d) 4
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. Let the proposition formula G be (-=Q V R) < (=P A R). How many assign-

ments of the truth value to P, Q, R are there to make G false? Here, A < B is
defined as (A—B) A (B—A)

(a) 2
(b) 3
(© 4
d 5

. Write down the truth table of two proposition formulae P—Q and — P VV Q and

show that they are equivalent formulae.

. Write down the disjunctive normal form of the two proposition formulae P vV Q

and P A Q.

. Write down the disjunctive normal form of the proposition formula P V — P.
. The conjunctive normal form of proposition formula —(P—Q) is

@ PVOYAPV = Q) A(=PV — Q)
b) PV = Q
© PVOAONEPVOAONANEPY =0)
dPA—-Q

. In the theorem of disjunctive normal form, why do we need the assumption F

(x1,X%2, . . s X)) £ 07
Which of the following formula is not a tautology? Tautology refers to the
proposition formula that is true in every possible assignment.

@ PHP)= QA =-Q
b PH -P-QV -Q
(© (PVQ—P) <~ (R—R)
(d) (P A Q—P) — (R—R)

Which of the following formula is a tautology?
(@) P—Q) < (Q—P)
(b) P—Q) < (=Q— —~P)

(©) (P=Q) < (=Q—P)
(d) P—Q) < (Q——=P)

Which of the following equation about “exclusive or” is correct?

@xDy)Az=(xArz2)®(yAz)

b (x®y)vz=(xvz)®(yVvz)

©) =(x@y)=(—x)D(—y)

@D (xv)y)@z=xD2)v(yD2)

How many different Boolean functions of 4 variables are there?
(a) 16

(b) 32

() 65,536
(d) 4,294,967,296
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14.

15.

16.

17.
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Every playing card has two sides. One side is a number and the other side is a
letter. Now there are four cards on the table, with A, 3, S, 8 facing up. In the
worst case, how many cards do you need to turn over to confirm whether the
following proposition is true for these four cards: the number on the vowel card
(cards with letters AEIOU) must be even.

(@ 3
(b) 2
(©1
(d) 4

Three people, Alice, Bob and Charlie, said the following three sentences.

¢ Alice: Both Bob and Charlie lie.
e Bob: I tell the truth.
e Charlie: Bob lies.

Which of the following choices must be true?

(a) Charlie lied.

(b) Alice lied.

(c) Bob lied.

(d) All the previous three choices may be false.

Is the following logic correct? That is, assuming that the premise is true, is the
conclusion also true? Please explain your answer.

e Premise (1): students who take the course of Introduction to Computer
Science can master Golang.

* Premise (2): Some students who master Golang can serve as the teaching
assistants in the course of Introduction to Computer Science next year.

* Conclusion: some students who take the course of Introduction to Computer
Science can serve as teaching assistants next year.

Denote by P the statement “I will travel around the world” and Q the statement
“I have enough money”. Let f be the statement “I will travel around the world,
only if I have enough money”. Which is the correct symbolization of f?

(@)

Q—P
(b)

P—Q
(©

P—Q
(d
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18.

19.

20.

21.

22.

Let P(x) denote the statement “x masters Golang”, Q(x) denote the statement “x
take the course of Introduction to Computer Science”, and R(x) denote the
statement “x can serve as teaching assistants in the course of Introduction to
Computer Science next year”. Let f be the statement “students who take the
course of Introduction to Computer Science can master Golang” and g be the
statement “some people who master Golang can serve as teaching assistants in
the course of Introduction to Computer Science next year”. Which is the correct
symbolization of fand g?

(@)
f:¥x(Q(x) A P(x)); g : Ax(P(x) A R(x))
(b)
[ Vx(Q(x) — P(x)); g : Ix(P(x) — R(x))
(©)
f:Vx(Q(x) — P(x)); g : Ix(P(x) AR(x))
(d)

[ x(Q(x) A P(x)); 8 : 3x(P(x) — R(x))

Can a Turing machine stop in the middle? Select the correct answer.

(a) No. A Turing machine stops when it enters an accept state or a reject state.

(b) Yes. A Turing machine can stop before it enters an accept state or a reject
state, because the head sees a symbol not recognizable.

(c) Yes. A Turing machine can stop before it enters an accept state or a reject
state, because the machine enters a state with no next state.

(d) Yes. A Turing machine can stop before it enters an accept state or a reject
state, because the state transition table has only a finite number of entries,
which cannot model all possible state transitions.

Design a Turing machine to accept the language L = {0" In > 1} where the
input alphabet is X = {0, 1} and B represents the blank symbol. That is, the
Turing machine should accept 0 or 000, but reject 010 or 100.

Design a Turing machine to accept the language L = {0°1°2° la,b,c > 0,
a + b = ¢} where the input alphabet is £ = {0, 1, 2}. That is, the Turing machine
should accept 0122 or 02, but reject 012 or 1002.

(**%*) In the definition of Turing machine, if the transition function is specified
as Q x I'-Q x I' x {—}, which means that the Turing machine can only move
its head to the right and cannot move its head to the left in each state, we call it a
right-moving Turing machine. Which of the following propositions about
right-moving Turing machine and Turing machine is correct?

(a) There is a computing task which can be decided by Turing machine, but not
by right-moving Turing machine.
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(b) There is a computing task which can be decided by the right-moving Turing
machine, but not by Turing machine.

(c) Right-moving Turing machine and Turing machine have the equivalent
computing power.

(d) None of the above three propositions has been proved at present.

(***) Use the Pumping Lemma to prove that palindromes cannot be recognized
by finite automata.

We say that an automaton recognizes the language of all palindromes, if
when a character string of finite length is fed to the automaton as input, the
automaton will finish in finite number of steps and output 1 if the string is a
palindrome, and O if the string is not a palindrome.

Pumping Lemma. Let L be a language recognized by finite automata. Then
there exists an integer n depending only on L such that every string w € L of
length at least p (called the “pumping length”) can be written as w = xyz (w can
be divided into three substrings), satisfying the following conditions:

@ i > 1
(®) byl <p
(¢) Vk>0,xz€ L

Regarding the Church-Turing Hypothesis, which of the following is correct?

(a) The Hypothesis shows the generality feature of logic thinking. It says that
Turing machine is a general-purpose model of computation.

(b) The Hypothesis says that Turing machine is not as general purpose as my
laptop computer, because a Turing machine cannot create a PowerPoint
presentation file.

(c) The Hypothesis says that Turing machine is general-purpose. Thus, one can
use Turing machine to automatically prove the Goodstein theorem.

(d) The Hypothesis says that Turing machine and my laptop computer have
equal power, in terms of computability.

3.5 Bibliographic Notes

The chapter quotation is from Professor Georg Gottlob of Oxford University, in a
keynote speech addressing the 2009 European Computer Science Summit

[1].

Kleene logic and the number of Kleene expressions are discussed in [2]. Kirby

and Paris showed that Goodstein’s theorem [3] cannot be proven in a mathematical
system containing Peano Arithmetic [4].
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Chapter 4 )
Algorithmic Thinking s

So if an algorithm is an idealized recipe, a program is the
detailed set of instructions for a cooking robot preparing a
month of meals for an army while under enemy attack.
—Brian Kernighan, 2017

Algorithmic thinking is concerned with solving problems smartly, by designing and
using algorithms. We look at the world through an algorithmic lens.

A problem is specified by rigorously specifying the input and the desired output.
An algorithm is a set of rules specifying the sequences of computational steps for
solving a specific problem. That is, for any given input data, the algorithm produces
the desired output data. Thus, an algorithm is specified as follows:

A Specific Algorithm

* Input: specifying the given input data.

e Output: specifying the desired output data.

* Steps: specifying the sequence of computational steps.

What exactly does smart mean in solving problems smartly? The following four
characteristics of algorithmic thinking are noteworthy. Discussing these four char-
acteristics constitutes the main contents of this chapter.

* A smart way to define algorithms. Donald Knuth gives a five-point definition of
algorithms. Here, smartness manifests as simplicity. This definition captures the
essence of algorithms, is extremely simple, yet universally applicable. Also, the
simple definition makes it easy to check if a sequence of steps is an algorithm.

* A smart way to measure algorithms. We use asymptotic notations and asymp-
totic analysis methods to measure and analyze the time and space complexities of
algorithms. This asymptotic way avoids many irrelevant details and idiosyncra-
sies. It also reveals an important division of the hardness of computational
problems: the tractable (called P) and the intractable (called NP).

* Smart paradigms to design algorithms. We discuss several representative para-
digms to reveal concrete skills and crafts, including divide-and-conquer, dynamic
programing and greedy paradigms. They help design clever and much faster
algorithms.
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e Smart variations to adapt for problem nuances. Here, smartness manifests as
flexibility. Problem nuances are utilized to increase algorithmic efficiency.

4.1 What Are Algorithms

We first discuss the algorithm definition and how to measure algorithms. The bubble
sort algorithm is used as an illustrative example. In Sects. 4.2 and 4.3, we introduce
the design and analysis of some representative algorithms.

4.1.1 Knuth’s Characterization of Algorithm

In his seminal work The Art of Computer Programming, Donald Knuth proposed a

five-point definition of algorithm, which has been widely accepted and used.
Definition. An algorithm is a finite set of rules specifying sequences of compu-

tational steps for solving a given problem, with the following five properties.

e Finiteness. An algorithm must always terminate after a finite number of steps.

* Definiteness. Each step of an algorithm must be precisely defined, that is, the
actions to be carried out must be rigorously and unambiguously specified.

e Input. An algorithm has zero or more inputs, given before the algorithm begins or
during the algorithm’s execution.

* Qutput. An algorithm has one or more outputs, which relate to the inputs.

* Effectiveness. Every operation of an algorithm must be sufficiently rudimentary,
such that in principle, the operation can be done by a human using paper and
pencil, in finite time.

From the algorithmic lens, a problem is often specified as follows: design an
algorithm according to Knuth’s definition, such that for any given input data, it
produces the desired output data. The algorithm is specified as follows, where the
Steps part must satisfy the five properties in Knuth’s definition.

* Input: specifying the given input data.
e Output: specifying the desired output data.
* Steps: specifying one or more sequences of computational steps.

Students can use a programming language to specify an algorithm. In fact, such a
specification is more than a specification, but also an implementation of the algo-
rithm, because the program can be compiled and automatically executed on a
computer.

However, the chapter quotation tells us that an algorithm is not the same as a
program. The quicksort algorithm was discovered before the invention of the Go
programming language. Many algorithms were designed and used long before the
modern computer era.
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Algorithms represent essential ideas of programs. They are sufficiently detailed
(Knuth’s five points) to ensure that they are step-by-step procedures, but ignore
many syntactic and semantic details of any particular programming language. In the
design and analysis of algorithms, people often use pseudocode, i.e., some form of
high-level natural language mixing mathematic notations, to specify an algorithm.
This chapter follows this practice.

Example 4.1. Algorithm Versus Non-algorithm
Consider the problem of finding a common divisor of two positive integers x and y.
The problem is easily specified:

e Input: Two positive integers x and y.
e Output: A positive integer z such thatx % z=0and y % z = 0.

For instance, for input numbers x=36 and y=24, a desired output is 3. Indeed, the
positive integer 3 is a common divisor, since 24%3=0 and 36%3=0.

One may devise many sequences of computational steps to solve this problem.
However, a sequence of computational steps is not necessarily an algorithm. An
algorithm must satisfy Knuth’s five properties. Let us contrast two specifications.

The first specification (CD1) randomly picks a positive integer z and checks to see
if it is a common devisor of x and y.

CD1: Randomly Pick and Check

e Input: Two positive integers x and y.

e Output: A positive integer z such thatx % z=0and y % z = 0.
¢ Steps:

while true
randomly pick a positive integer z
if (x%z==0) and (y % z==0) then halt

However, CD1 is not an algorithm because it violates some of the five properties.

* It may never stop, violating the finiteness property.

e The step “randomly picking a positive integer” is not sufficiently rigorous or
unambiguous. Out of the set of infinitely many positive integers, what is the
meaning of “randomly picking”? It violates the definiteness property.

The second specification (CD2) is a revised version of Euclid’s algorithm. The
idea is to repetitively replace the larger of x and y by y and x % y, till y = 0.

CD2: Euclid’s Algorithm

e Input: Two positive integers x and y such x > y.

¢ Output: A positive integer z such that x % z =0and y % z = 0.
¢ Steps:
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while y # 0
X, V=Y, X%y

zZ=X

CD2 is indeed an algorithm. In fact, it does more than finding a common divisor,
but finding the greatest common divisor of x and y, i.e., gcd(x, y). We leave it as
exercises to show that CD2 indeed satisfies Knuth’s five properties, and the algo-
rithm finds ged(x, y)=12, given two inputs x=36 and y=24.

4.1.2 The Sorting Problem and the Bubble Sort Algorithm

The sorting problem is a classic problem in computer science. The purpose of sorting
is to adjust a sequence of “out-of-order” numbers into an ordered sequence of
numbers. For simplicity, we assume that all positive integers are stored in an
array, these integers have different values, and we need to sort these positive integers
from small to large. More formally, the sorting problem is:

The Sorting Problem
« Input: a sequence <ay, as, .. ., a, > of n positive integers.
* Output: a reordered sequence < a},d5, ...,a, > such thata) <dj < ... <da,.

People have developed various algorithms to solve the sorting problem, such as
bubble sort, insertion sort, quicksort, merge sort, heap sort, etc. They vary in
simplicity, efficiency, and suitability to different application scenarios. They also
provide rich examples for the design of algorithms. In this section, we discuss the
bubble sort algorithm as an example to appreciate how an algorithm works. In Sect.
4.2, we will discuss insertion sort and merge sort to show the power of the divide-
and-conquer strategy. In Sect. 4.3, we will further introduce the quicksort algorithm
which is more sophisticated.

Example 4.2. The Bubble Sort Algorithm

The name “bubble sort” comes from the fact that large numbers will gradually
bubble up to the top of the sequence through comparison and exchange operations,
just like bubbles rising from the bottom in a water tank. The algorithm works as
follows (Fig. 4.1).

The idea of bubble sort is very simple. In each round, compare every adjacent pair
of numbers from left to right, and exchange the two numbers of a pair if the larger
one is on the left side of the smaller one. After one round, the largest number will be
moved to the rightmost position. We then go to the next round and compare-and-
exchange every pair of numbers from left to right again.

For input A=[6, 2, 4, 1, 5, 9], the algorithm’s sequence of execution steps is
shown in Table 4.1. The output is A=[1, 2, 4, 5, 6, 9].
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Input: An array A of length n to be sorted, e.g., A=[6,2,4,1,5,9].
Output: A sorted array A, e.g., A=[1 ,2,4,5,6,9].
Steps:
fori=1 ton-1
for j=1 to n-i

/[ for each round
/I compare every adjacent pair
if A [jI> A [j + 1] then exchange A [j] with A [j + 1];

Fig. 4.1 The bubble sort algorithm

Table 4.1 Bubble sort [6, 2, 4, 1, 5, 9] into [1, 2, 4, 5, 6, 9]

Outer loop Inner loop State before State after

First round 1st comparison 6,2,4,1,5,9 2,6,4,1,5,9
6>2, exchange
2nd comparison 2,6,4,1,5,9 2,4,6,1,5,9
6>4, exchange
3rd comparison 2,4,6,1,5,9 2,4,1,6,5,9
6>1, exchange
4th comparison 2,4,1,6,5,9 2,4,1,5,6,9
6>5, exchange
5th comparison 2,4,1,5,6,9 2,4,1,5,6,9
6<9, no exchange

Second round 1st comparison 2,4,1,5,6,9 2,4,1,5,6,9
2<4, no exchange
2nd comparison 2,4,1,5,6,9 2,1,4,5,6,9
4>1, exchange
3rd comparison 2,1,4,5,6,9 2,1,4,5,6,9
4<5, no exchange
4th comparison 2,1,4,5,6,9 2,1,4,5,6,9
5<6, no exchange

Third round 1st comparison 2,1,4,5,6,9 1,2,4,5,6,9
2>1, exchange
2nd comparison 1,2,4,5,6,9 1,2,4,5,6,9
2<4, no exchange
3rd comparison 1,2,4,5,6,9 1,2,4,5,6,9
4<5, no exchange

Fourth round 1st comparison 1,2,4,5,6,9 1,2,4,5,6,9
1<2, no exchange
2nd comparison 1,2,4,5,6,9 1,2,4,5,6,9
2<4, no exchange

Fifth round 1st comparison 1,2,4,5,6,9 1,2,4,5,6,9

1<2, no exchange
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Let us take another look at the bubble sort algorithm from the viewpoint of
Knuth’s characterization. It is indeed an algorithm according to Knuth’s definition.
The description of the algorithm defines a finite set of rules for specifying the
sequence of computational steps to solve the sorting problem.

This specification satisfies the five properties in Knuth’s definition of algorithms.

* Finiteness. In the bubble sort algorithm, the outer loop needs to be executed n — 1

times; for the i-th round, the inner loop contains (n — i) comparisons and at most
n—1

(n — i) exchange. Therefore, the algorithm must terminate within % X
i=1

(n—i) =" steps.

* Definiteness. The meaning of each step in the bubble sort algorithm is very clear.

e Input. There are two inputs. One is the array A to be sorted, and the other is the
length n of the array.

*  Output. The output is the sorted array A, which share space with the input.

» [Effectiveness. The basic operations of bubble sort are comparison and exchange.
Both operations are sufficiently rudimentary. People can use pen and paper to
achieve these operations accurately.

The bubble sort algorithm is inefficient, requiring roughly n*/2 comparison
operations. However, the algorithm has the obvious advantage of simplicity. It
consists of a straightforward double loop and an easy-to-understand loop body. In
addition, it has the robustness advantage: in the case when a small number of errors
of comparison operations may occur, the resulting output will still be a mostly sorted
sequence, since the algorithm does comparisons only on adjacent numbers.

4.1.3 Asymptotic Notations

It is always important to know whether an algorithm is efficient or not. Given a
problem or an algorithm, how much resource (such as execution time or storage
space) is theoretically required? For example, in the bubble sort algorithm in
Example 4.2, for for n positive integers, the algorithm requires n(n—1)/2 compari-
sons and at most n(n—1)/2 exchange steps. Usually, we do not need to know the
exact number or quantity of resource required. We can say the bubble sort algorithm
requires roughly n” steps, or more professionally, we say the time complexity of
bubble sort algorithm is O(n?). Here, O(n?) is the asymptotic notation of “exactly n
(n—1)/2 comparisons and at most n(n—1)/2 exchange steps”.

We usually use the asymptotic notations such as O(:), o(-), £(-) to describe the
efficiency of the algorithms or problems. The following is the formal definition of
asymptotic notations.

Definition: let f, g : N — N be two functions, where N is the set of natural
numbers.



4.1 What Are Algorithms 137
Table ;‘2 Equal(i;ies an(é o Notation | Equalities and Inequalities
gequa ities regarding 0, 0, Q, A o) AP Lo @ £ o)
notations I 158 158 2 158
) =0 =0@ ™) |n”#0@ ")
o nl £ ) nl B_0n'®) |0’ = on'®
o A LOm) AP —en'®) | i £en )

* fin) = O(g(n)) if 3 constant ¢, d >0, YV n>d,fin) < cgn).
s f(n) = o(g(n)) if hm ()_()

oo &(n
e fin) = Qgn)) if EI constant ¢, d > 0,V n > d, f(n) > cg(n).
* fin) =

O(g(m) if fin) = O(g(n)) and fin) = Q(g(n)).

Intuitively, these notations have the following asymptotic meanings:

* The big-O notation denotes that g is an upper bound of f;

¢ The small-o notation denotes that g is a strict upper bound of f,
* The Q notation denotes that g is a lower bound of £, and

* The © notation denotes that g is the same order of f.

It is a good learning practice to compare these notations in one place with some
concrete values, to see their differences. For instance, given fin) = n'% and g
(n) = n*, we have the equalities and inequalities shown in Table 4.2.

The above table reveals something interesting regarding equality when
expressing asymptotic values: the commutativity law and the transitivity law of
ordinary math do not hold anymore. It is correct to write n'->®* = O(n?), but incorrect
to write O(n?) = n'>% or n* = O('®). In fact, the following equalities hold.
However, O(n*) # O(n"®).

n1458 — O(n4),
n1458 — O(I’ZS),

n'® = O(n2 +n-3),

'8 = 0(n'®).

The meaning of the equal sign (=) has changed with asymptotic notations. It
becomes single-direction equality. The equation n'>® = O(n*) means that the right
side value n” is an upper bound of the left side value n'%..

The introduction of the asymptotic notations helps us focus on the dominant term
when n becomes large. Though n® = O2n* + 3n — 4) is correct according to the
definition of big-O notation, it is strange to use the notations in this way. Usually, we
will say 2n* + 3n — 4 = O(n*) where O(n”) represents the main term of function
2n* + 3n — 4 and it helps us focus on how fast the function grows with the input size
n. Let us analyze the bubble sort algorithm as an example.
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Example 4.3. Time Complexity of the Bubble Sort Algorithm

To sort n positive integers, we know the bubble sort algorithm requires exactly n
(n — 1)/2 comparisons but we don’t know how many exchange steps we need. The
number of exchange steps depends on the input sequence. For example, if the input
sequence is <1, 2, ..., n>, no exchange steps are needed. If the input sequence is
<n,n — 1, ..., 1>, the algorithm performs n(n — 1)/2 exchange steps.

Furthermore, the running time of each comparison or exchange step depends on
the physical device which executes this algorithm. So, the exactly running time
depends on many factors and is difficult to estimated. However, we can always
assume the running time of one step (either comparison or exchange) is bounded by
some constant which is independent of n for any physical device.

By using the asymptotic notations, we can safely say that the running time of the
bubble sort algorithm is O(nz). On the other hand, it is also Q(nz) since we need n
(n — 1)/2 comparison steps. Thus, the time complexity of the bubble sort algorithm is
o).

The asymptotic notations help us ignore some details of the running process of
the algorithm and focus on the dominant term in the running time. It shows that,
when the input size grows, the running time of bubble sort algorithm grows
quadratically, but neither linearly nor exponentially.

4.2 Divide-and-Conquer Algorithms

Divide-and-conquer is an algorithm design paradigm based on the idea that we
recursively break down a problem into two or more subproblems of the similar
type, until these subproblems become simple enough to be solved directly. In this
section, we will use several examples to illustrate the idea of divide and conquer
method. We firstly focus on how different division methods affect the performance
of the algorithm. Sections 4.2.1 and 4.2.2 consider the sort problem again. They
provide two different ways to split the original problem into subproblems, and show
different performance correspondingly. In Sect. 4.2.3, we show an interesting
example which illustrates that equal division is not always the best idea. Then, in
Sects. 4.2.4 and 4.2.5, we will learn how to efficiently combine the results of
subproblems so as to obtain the result of the original problem. These two examples
illustrate that the construction of the subproblems and the combination process
should closely bound together. Finally, in Sect. 4.2.6, we summarize the key points
in the divide-and-conquer methodology.
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4.2.1 The Insertion Sort Algorithm

In the sorting problem, we want to order the sequence with n integers from small to
large. One natural idea is to firstly sort the first » — 1 integers and then insert the n-th
integer into the proper position of a sorted sequence. How can we sort the firstn — 1
integers? Well, this is a subproblem with smaller size. This leads to the idea of the
insertion sort algorithm (Fig. 4.2).

In each round, the first i integers of the sequence are already in order. Our task is
to insert the (i + 1)-th integer into the proper position. Table 4.3 shows the detailed
process for the example input [6, 2, 4, 1, 5, 9].

The insertion sort algorithm is not a typical example of divide-and-conquer
method. But it illustrates the idea of subproblem. For the sequence of n unsorted
integers, we divide it into two subproblems: one with the first n — 1 integers, and the

Input: An array A of length n to be sorted, e.g., A=[6, 2,4, 1, 5, 9]
Output: A sorted array A, e.g., A=[1, 2,4, 5, 6, 9].
Steps:
fori=1ton-1
j=i+1;
while (j>1) and (A[j-1]>A[j])
exchange A[j] with A[j-1];
=i

Fig. 4.2 The insertion sort algorithm

Table 4.3 The sequence of steps for insertion sorting [6, 2, 4, 1, 5, 9] into [1, 2, 4, 5, 6, 9]

Outer loop Inner loop State before State after
First round 1st comparison 6,2 2,6
6>2, exchange
Second round 1st comparison 2,6,4 2,4,6
6>4, exchange
2nd comparison 2,4,6 2,4,6
2<4, no exchange
Third round 1st comparison 2,4,6,1 2,4,1,6
6>1, exchange
2nd comparison 2,4,1,6 2,1,4,6
4>1, exchange
3rd comparison 2,1,4,6 1,2,4,6
2>1, exchange
Fourth round 1st comparison 1,2,4,6,5 1,2,4,5,6
6>5, exchange
2nd comparison 1,2,4,5,6 1,2,4,5,6
4<5, no exchange
Fifth round 1st comparison 1,2,4,5,6,9 1,2,4,5,6,9
6<9, no exchange
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InsertionSort(n) //sort sequence A[1] to A[n]
if (n==1) then return;
InsertionSort(n-1); //solve the sub-problem with A[1] to A[n-1]
Jj=n;
while (j>1) and (A[j-1]>A[j])
exchange A[j] with A[j-1];
=1

Fig. 4.3 The insertion sort algorithm (revision)

MergeSort([A[1],...,A[n]]) //sort sequence A[1] to A[n]
if (n==1) then return [A[1]];
B=MergeSort([A[1],...,A[n/2]]);
C=MergeSort([A[n/2+1],...,A[n]]);
return merge(B, C);

Fig. 4.4 The merge sort algorithm

other with the last integer. Suppose we can solve two subproblems while the second
one is trivial; we only need to insert the last integer into the sorted sequence.

We can revise the insertion sort algorithm in the following way to emphasize the
idea of subproblems (Fig. 4.3).

Now let us consider the time complexity of insertion sort algorithm. Let 7(n)
denote the time complexity of the insertion sort algorithm for n unsorted integers.
We have

(1) =0;
T(n) = T(n — 1) + time for insertion

<T(n—1)+cn

for some constant c¢. Thus, we have T(n) = O(n?).

4.2.2 The Merge Sort Algorithm

In the insertion sort algorithm just discussed above, we divide the original problem
into two unequal subproblems, where one subproblem contains n — 1 integers and
the other subproblem contains only one integer.

Figure 4.4 shows another sorting algorithm called the merge sort algorithm. Here,
we divide the original problem into two subproblems, which deal with almost equal
number of integers. That is, the sorting problem of MergeSort([A[1],...,A[n]]) is
first divided into two subproblems: MergeSort([A[1],. . .,A[n/2]]) and MergeSort([A
[n/2+1],...,A[n]]). Then we merge the results B and C of the two subproblems,
which are each a sorted sequence of integers.
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merge(B, C) // merge two sorted sequences
while (B is not empty) and (C is not empty)

b = first integer in B;
¢ = first integer in C;
if (b<c) then
append A with b;
delete b from B;
else
append A with c;
delete ¢ from C;

while (B is not empty)

b = first integer in B;
append A with b;
delete b from B;

while (C is not empty)

¢ = first integer in C;
append A with c;
delete ¢ from C;

return A;

Table 4.4 The sequence of
steps for the merge function

Fig. 4.5 The merge function in the merge sort algorithm

Comparison State before

State after

Ist comparison
2>1, delete 1 from C

v
N=lio))

2nd comparison
2<5, delete 2 from B

)

3rd comparison
4<5, delete 4 from B

N[O N[O

4th comparison
6>5, delete 5 from C

~

>
w

N | O

Sth comparison
6<9, delete 6 from B

=IO A= N =N = NN = =N

no comparison .2,4,5,6

delete 9 from C

QEFZQF»QT>QT>QE> QW

=]

:1,2,4,5,6,9

QEFZQFZQT> QT QE> QW

How can we merge two integer sequences B and C? If B and C are two arbitrary
sequences of integers, the merging problem is as difficult as the original sorting
problem. But remember that, we already know an important fact: B and C are two
sorted sequences of integers.

Figure 4.5 shows one of the ways to merge two sorted sequences. Table 4.4 shows
the example process for merging two sorted sequences B=[2, 4, 6] and C=[1, 5, 9].
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|1,2,4,5,6,7,9]

Fig. 4.6 The process of merge sort algorithm with input [6, 2, 4, 5, 1, 7, 9]

We are now ready to discuss the main part of the merge sort algorithm in details.
Note that when we write down B = MergeSort([A[1],. . .,A[n/2]]), we recursively
call the merge sort algorithm for a smaller subproblem with input sequence A[1],. . .,
A[n/2]. In this subproblem, we will again divide it into 2 sub-subproblems: A[1],.. .,
A[n/4] and A[n/4+1],. . .,A[n/2], and recursively solve the sub-subproblems with the
merge sort algorithm. The recursion will end if the size of unsorted sequence is
1 which is the trivial case. Figure 4.6 illustrates an example for the input sequence [6,
2,4,5,1,7,9].

Finally, let us consider the time complexity of the merge sort algorithm. Let 7(n)
denote the time complexity for n unsorted integers. Similar to the insertion sort
algorithm, we have
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or([g) v

for some constant c. Thus, we have T(n) = O(n log n) which is more efficient than
the insertion sort algorithm.

The framework of both the insertion sort algorithm and the merge sort algorithm
is the same. The cost of “insertion of the last element” in the insertion sort algorithm
and the cost of “merge function” in the merge sort algorithm are also roughly the
same, where each requires at most n — 1 comparisons. The main difference is the
sizes of the two subproblems. In the insertion sort algorithm, the sizes are 1 vs.n — 1,
while in the merge sort algorithm, the sizes are n/2 vs. n/2. This reduces the time
complexity from O(n?) to O(n log n) for the sorting problem. It illustrates that when
we want to use the divide-and-conquer method to solve a problem, it is important to
smartly divide the original problem into subproblems. Often, it is smart to divide a
problem into two subproblems of almost equal sizes.

4.2.3 Single Factor Optimization

In this section, we will discuss an interesting problem called single factor optimiza-
tion. One illusion of the people who just learn the divide-and-conquer method is that
they may blindly believe the power of equal division, like the one we did in the
merge sort algorithm. This section illustrates that it is not always the case.

The single factor optimization problem considers a univariate function f defined
in the interval [a, b]. Assume that f satisfies the following single-peak condition:
f firstly (strictly) monotonically increases and then (strictly) monotonically
decreases. How can we quickly find the point x that maximize f(x)?

Well, if function f'has good properties, we might compute the maximum directly.
For example, if we know the explicit representation of the function f, we can
calculate the zero point of its derivative. But in this section, we assume fis implicitly
accessed by an oracle such that the only allowed operation is that given x, the oracle
will return the value f{x). Our goal is to minimize the number of oracle queries.

Generally, in order to facilitate computer processing, we need to transfer the
problem into a discrete version. Suppose we discretize the interval [a, b] into n points,
and the function f'is represented by an array A: A[1], A[2].. .., A[n]. The choice of
n depends on the precision we want to achieve. In this way, the problem can be
described as the following searching problem:

The Single Factor Optimization Problem

e Input: array A[1], A[2], ..., A[n] such that 3i, 1 <i < n, A[1]<A[2]< " "<Al[i],
and A[i]>A[i+1]>-->A[n].

¢ Qutput: i and Ali].
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Algorithm 1: find the maximum based on equal division
Input: A[1], A[2]...., A[n] which satisfies single-peak property
Output: the maximum value in the array A[i], i

begin=1; end=n;
While (end-begin>1) do
mid = (begin+end)/2;
If (A[mid]<A[mid+1]) then
begin=mid+1;
Else
end=mid;
If (A[begin]<A[end]) then
Return Alend], end
Else
Return A[begin], begin

Fig. 4.7 The single-factor optimization (binary search)

The simplest way to solve this problem is to query the array A one by one. The
worst case needs n queries. This method can be used to find the maximum value of
any array and obliviously does not take full advantage of the “single-peak” property.

A natural idea is to search from the middle. We select to query A[2] and A[2 + 1].
There are several cases:

1. IfA [%] > A [% + 1] , then according to the property of the function, we know that
the maximum value of the function is in the interval [1, 4], so we can discard the
interval [% +1, n] ;

2. IfA[%] < A[2+1], similar to 1), we can determine that the maximum value of
the function is in the interval [+ 1,n], so we can discard the interval [1, 4];

3. The case A[4] = A[%+ 1] is impossible.

In either case, we have reduced the search interval from [1, #] by half. In the new
search interval, which could be [1, g] , or [% +1, n}, the function f still satisfies the
property of single-peak condition. We can recursively call this algorithm to continue
searching for the maximum point of the function.

The algorithm we described above can be formalized into the algorithm shown in
Fig. 4.7.

Let’s take a look at the efficiency of this algorithm. We use 7(n) to denote the
number of queries required by an algorithm on an input of length . In the first step of
the algorithm, we need to query twice: the function values f ( LgJ ), f ( EJ + 1). In the
second step of the algorithm, we reduce the problem with the original input size n to
an input size of |%| or (n — [4]) subproblem. The setting of this subproblem is
exactly the same as the original problem, except that the scale is smaller than the
original problem. Therefore, if the algorithm is called recursively, the required
number of queries is 7'(|%]) or T(n — |%|). Combining these two steps, we can get:
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Algorithm 2: find the maximum based on the golden section method
Input: A[1],A[2], -+, A[n]
Output: the maximum value in the array
Steps:
begin < 1, end «n
While end — begin > 1 do
x, < la-begin+ (1 —a) -end],x, < |(1 —a) - begin + a - end]
If A[x;] < A[x;] then
begin « x;
Else
end < x;
If A[begin] < A[end] then
Return A[end], end
Else
Return A[begin], begin

Fig. 4.8 The single-factor optimization (golden section method)

ron < mas{r ()7 o [2)) +2 (25 +2

In addition, we know that the initial value T (1) = 1. Thus, we have

T(n) <2[logn] + 1

In the above algorithm, we make two queries each time and reduce the length of
the interval by half. Is it possible to further improve this algorithm? It seems to be the
most economical to shrink the interval by half each time, because if we divide the
interval into two parts, the length of one part will always be at least the half. Can we
reduce the number of queries in each round? This is possible, if we can reuse the
query results which we have obtained before.

Below we give another more efficient algorithm for the above problem. The idea
of Algorithm 2 is basically the same as that of Algorithm 1. The key difference lies in
the selection of cut points. In our algorithm and analysis, the
constant (\/5 — 1) /2~ 0.618 which is actually the golden section ratio is fre-
quently used. For the convenience of writing, we set & = (\/§ — 1) /2. The block
diagram of Algorithm 2 is shown in Fig. 4.8:

Now, let us analyze the performance of Algorithm 2. In order to simplify the
analysis, we ignore all rounding symbols. By querying x; = (1 — a) n and x, = an,
we reduce the problem to a subproblem A[1, .. .,an] or A[(1 — @) n, ..., n]. In either
case, the scale of the new subproblem is an. It seems that it is worse than binary
search. However, notice that for the new subproblem, one of the two points we need
to query is already known! Taking A[1, . . ., an] as an example, according to the steps
of the algorithm, the two points we need to query are y; = a(1 — a)n and y, = o’n.
Note that o is the golden section ratio which is the solution of the equation
2+ x—1=0. After simple calculation, we have y, = x;, which means that we
do not need to query the value of point y, because we already know the value of
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point x;. Similarly, for the subproblem A[(1 — a) n, . . ., n], we can know that the first
branch point required by the algorithm is exactly x,. In either case, we only need to
query ONE new point, so we get the following recursion:

By solving this recursion, we have
T(n) = log (1 g + 1

Comparing the two algorithms, we can see that the performance of Algorithm 2 is
better than that of Algorithm 1 (because 21log,n = log sn > log ;4 n). To solve
the same problem, when we use different methods to design our algorithm, its
performance is different. We always hope to be able to design the best algorithm,
that is, the most efficient algorithm to solve the problem.

In single-factor optimization, our intuition is to reduce the query number in each
round. We come up with the brilliant idea that we can reuse the query in the previous
round. In order to use such an idea, we modify the division method by using golden
section. This tells us: the division method and the combination method are
interdependent, and no division method is universal.

There is a final remark of the single-factor optimization problem. In all of our
discussion, our objection is to minimize the number of oracle queries. Since in most
real scenarios, one oracle query is much more expensive than the comparison
operations or assignment operations in the algorithm, it is natural to ignore the
cost of the other operations. But, if the running time of one oracle query is the
same as that of one comparison operation or one assignment operation, is algorithm
2 still better than algorithm 1?

4.2.4 Integer Multiplication

In this section, we will discuss the integer multiplication problem. We will show if
we apply divide-and-conquer method mechanically, we will not enhance perfor-
mance. Thus, we need to think about a cleverer way to solve the problem.

Firstly, let us describe the integer multiplication problem:

The Integer Multiplication Problem
e Input: X=x,x, _1.. X, Y=Yy, _ 1-- 1.
e Output: Z=Xx Y=XY
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Calculating the multiplication of two numbers is a problem we often encounter in
our daily life. We give an example to show how to calculate the multiplication of two
3-digit numbers 123 x 321 by hand.

3
I.
123
246
369

2 o

LS Jr—

X

39483

For two n-digit numbers (imagine that 7 is very large, for example, n = 10'?), if
we use a similar method to calculate the multiplication, we need n”> multiplications
and about n* additions of 1-digit operation. Let us see if we can reduce the total
number of calculations by adopting the divide-and-conquer approach.

Write the input X and Y as follows:

X=X, x 10" +X5,Y =Y, x 10"* 4+ Y,,
where the length of X, X, Yi, Y5 is n/2. What we need to calculate is:
Z=XY =XY; x 10" + (X, Y2 + X, ) x 10"? + X,Y,.

The naive idea is to call the algorithm recursively to calculate XY, X,Y,, XY/,
X,Y,. Based on this idea, we need to multiply two (n/2)-digits numbers 4 times in
total, and also need up to 3 times n-digits addition, so we get

T(n) = 4T(n/2) + 3n,
T(1) =1.

It is easy to solve the recursion and obtain T(n) = O(n?), where there is no
substantial improvement over the previous natural algorithm.

Now let us change the way of thinking. The idea is: what we need is
X1Y2 + X2Y1 instead OfX1Y2 and X2Y1.

Notice that XY, + XY, + X5Y) + XoYs = (X + X5)(Y) + Y»). So, by calculating
XY, XoYs, (X1 + X5)(Y7 + Y>), and then use

XY, +XpY, = (X] +X2)(Y1 +Y2)—X1Y1 —X,Y,,
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we can obtain X;Y, + X5Y;. By this method, we need to multiply two (n/2)-digits
numbers 3 times in total, and also need n-digits addition 6 times: X; + X5, Y1 + Y5,
(Xl + Xz)(Yl + Yz) - X1Y1 - XzYz, and

Z=XY, x 10" + (X1Y5 + X,Y}) x 1072 + X, Y.
Thus, we have

T(n) = 3T(n/2) + 6n,
T(1) = 1.

By solving this recursion, we have T(n) = cn'°®3 + O(n) ~ n'>°, which is a
great improvement compared to the naive algorithm with time complexity O®?).
This example tells us when designing divide-and-conquer algorithms, it is important
to make the number of subproblems of recursive calls as small as possible.

4.2.5 Matrix Multiplication

Matrix multiplication is a natural extension of integer multiplication. We want to
further illustrate the idea on how to minimize the number of subproblems.

The Matrix Multiplication Problem
* Input: two n x n matrices A = [a; ;], B = [b; j].
¢ OQutput: C = AB.

According to the definition of matrix multiplication, we know

Cij = ai,lle‘ + aiwzbzd' + ...+ ai’nan.

If we use the natural method to compute each ¢; ; directly, we need O(n3)
multiplications and O(n3) additions in total. Let use divide A, B and C into four
(n/2 x n/2) sub-matrices:

A A B B C C
Ao [ 1,1 1,2], B [ 1,1 1,2} c— [ 11 1,2]
Ary Ay By1 Bap Co1 Cyp

Then, we have

Cii=AnBi1 +A2By;
Cip=A1Bi2 +A2Bs
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Co1 = A21B11 +Ar5By
Cop =A21B12 +A22Bs»
If we directly call the subroutine to compute C;, ;, Cy, 2, C;, 1, C;, 5, we need

8 calls of the subproblem of the multiplication of #n/2 x n/2 submatrices. In addition,
we need 4 times addition of n/2 x n/2 matrices. Thus, the recursion is

T(n) = 8T(g) + 4(%)2

The final complexity obtained by solving this recursion is still O(n*). Applying
the previous ideas about n-digit multiplication, we need to reduce the number of
subroutine calls through appropriate addition and subtraction. How can we
achieve this? It is more difficult than the integer multiplication problem. The
following solution is proposed by Volker Strassen (1936-).

Example 4.4. Strassen’s Algorithm for Matrix Multiplication
Define the following 7 matrices:
M; = (A2 — A22) (B2 + Bap),
M; = (A11 + A22)(B11 + Bay),
M; = (A1 — A21)(Big + Bi2),
My = (A1 + A12)Bao,
Ms = A;1(Bi2 — Baa),
Ms = A22(B21 — Bii),
M7 = (Az1 + A22)Bi 1.

We can make an observation: the matrices we need to compute, e.g., C; 1, Cy, 2,
C,. 1, C;, 2, can be calculated by using My, . . ., M5 and some addition or subtraction
operations. The detailed method is as follows:

Cii =M; + M, — My + Mg,
Cia =My +Ms,
Ca1 =M + My,

Coo =My — M3 +Ms — My.

Let’s take a look at the performance of Strassen’s algorithm. First of all,
Strassen’s algorithm needs to call a total of seven sub-matrix multiplications. In

addition, the algorithm also needs to add n/2 x n/2 matrices several times, so we
have the following recursion:
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— n 2
T(n) = 7T(§> +0(n?).
Here we do not accurately calculate the total number of times required for the
addition or subtraction. Instead, we use the O(-) notation to hide the constant. In fact,

this constant does not affect the magnitude of T(n). No matter what the constant is,
the solution is T(n) = O(1'°¢") =~ O(n*®").

The algorithm proposed by Strassen in 1969 is the first algorithm about matrix
multiplication that can beat the conventional O(n*) algorithm. Since then, the upper
bound of the complexity of matrix multiplication has been continuously improved:
the algorithm complexity proposed by Pan in 1978 is O(n*7°®), by Bini et al. in 1979
is O(n*’®), by Schonhage in 1981 is O(n*>*%), by Romani in 1982 is O(n*>'"), by
Strassen in 1986 is O(n2'479). At present, the best matrix multiplication algorithm
was proposed by Coppersmith and Winograd in 1987. The complexity of the
algorithm was O(n*>’®) when originally proposed. Recently, the analysis of the
original algorithm has been continuously improved by Stothers, Williams, Le Gall
and others. The algorithm complexity is reduced to O(n*>7?%). Whether there is a
matrix multiplication algorithm close to O(n”) complexity is an important unsolved
problem in the field of algorithms.

4.2.6 Summarization

In this section, we discuss many examples with the help of divide-and-conquer
methodology. In general, divide-and-conquer comes from the idea that when you
want to solve a complicated problem, try to transfer it into some easier problem.
There are two features of the problems which can be solved with the help of divide-
and-conquer method. Firstly, the problem with extremely small size is straightfor-
ward to solve, for example, the sort problem with only two elements. This will be
served as the basis of the recursive process. Secondly, we can solve the general
problem with the help of the problem with smaller size. This part is the art in the
divide-and-conquer method. There is no universal way of construction for every
scenario, and we need to observe the specialty for each problem ourselves. However,
there are two things which are usually important in the design of divide-and-conquer
algorithms.

Firstly, it is usually better to use smaller number of subproblems to solve the
original problem. In many examples, such as integer multiplication and matrix
multiplication, we are trying to reduce the number of subproblems and we show
with smaller number of subproblems, we dramatically improve the performance of
the algorithms, even if we slightly increase the time complexity for each round. But
please do not go to the other extreme. For example, in the integer multiplication
problem, the natural idea gives us T(n) = 4T(n/2) + 3n. If we modify it into T
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(n) = 3T(n/2) + 6n as illustrated in Sect. 4.2.4, it improves the performance. But if
we modify it into T(n) = 3T(n/2) + O(nz), the performance will be T(n) = O(nz). IfT
(m) = 3T(n/2) + O@>), the performance will be even worse than the natural
algorithm. In other words, in the design of divide-and-conquer algorithms, we
need to balance all parts.

Secondly, it is usually better to partition the original problem into subproblems.
For example, in the sort algorithm, we partition the whole unsorted set into two
disjoint subsets and recursively sort them. It makes no sense if the subproblems have
overlapping elements. Partition, in some sense, can make the size of subproblems as
small as possible. Thus, it is useful for better performance. But in the example of
single factor optimization, we also see that this is not always the case. In such an
example, although two possible subproblems [1,...,an] and [(1 — a)n,n] are
overlapping, it is faster than the natural halving method. In the integer multiplication
and the matrix multiplication problems, it is even hard to distinguish which idea is a
partition. When dividing the problem into subproblems, the partition method is
usually a good start point since it makes the size of subproblems small, but the
size of subproblems is not the only factor in the divide-and-conquer method, and we
need to balance all parts. On the other hand, if there are too many overlaps between
different subproblems, some other methods may be more powerful than divide-and-
conquer. See Sect. 4.3.1 for an example.

4.3 Other Examples of Interesting Algorithms

In the previous section, we focused on the algorithms based on the divide-and-
conquer method. We also learn how to analyze the algorithm complexity through
recursion expression. In this section we will see some other examples of algorithms.
The first example is using dynamic programming to compute Fibonacci number. We
will see how this method can eliminate duplicated computation. The second example
is the stable matching problem, which uses a kind of “greedy” algorithm method,
different from the divide-and-conquer paradigm. While the correctness of a divide-
and-conquer algorithm is usually straightforward, the correctness of a greedy solu-
tion needs to be proved. The final example is the quicksort algorithm for the sorting
problem. The quicksort algorithm is not a deterministic algorithm, that is, the
algorithm will toss some coins to decide the next step during the process of running.
We will see how to analyze the complexity of such algorithms.

4.3.1 Dynamic Programming

A divide-and-conquer algorithm solves a problem by dividing the problem into
independent subproblems, and then combining their solutions. The key character
here is that the subproblems are independent, meaning that they usually do not
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overlap. That is, the subproblems do not share subproblems and do not solve the
shared subproblems multiple times.

What if the subproblems do overlap? An algorithm paradigm called dynamic
programming specifically addresses such concerns. A dynamic programming algo-
rithm divides the problem into potentially overlapping subproblems and combines
their solutions. The key character is that the solution to every shared subproblem is
memorized and reused, avoiding computing its solution multiple times.

There are two approaches to implementing memorization in dynamic program-
ming algorithms, the top-down approach and the bottom-up approach. We analyze
the example of computing a small Fibonacci number F(5) to see how the two
approaches in dynamic programming work, as shown in Example 4.5.

Example 4.5. Eliminate Redundant Computation by Dynamic Programing
We analyze the behaviors of two dynamic programming algorithms computing a
small Fibonacci number F(5), against the recursive program fib-5.go. The details of
the fib-5.go program and the fib.dp-5.go program using the top-down approach are
shown in Fig. 4.9. Some diagnostic print statements are added to print out interme-
diate results, to reveal the behaviors of these programs.

The recursive program fib-5.go does a lot of redundant, unnecessary computa-
tions. This becomes immediately clear when we look at Fig. 4.10, which shows the
tree of recursive calls to fibonacci(n), denoted as F(5), (F4), F(3), F(2), F(1), and F
(0). The circled numbers, D, @), . . ., @), show the order as to how the calls are made.
The program calls fibonacci(n) 15 times. It first calls F(5), then F(4), and finally F(0).
Note that F(0) is called 3 times, F(1) 5 times, F(2) 3 times, F(3) 2 times. Altogether,
9 unnecessary computations are performed.

The fib.dp-5.go program uses the top-down approach of dynamic programming
to compute F(5). It is similar to the recursive program fib-5.go, but results of F(n) are
stored in a 6-element array mem. Every element meml[i] is initialized to -1, to denote
that this element has not been computed yet. When the program calls fibonacci(n),
the code first checks if mem[n] is -1. If it is not, the function call immediately returns
with the already computed value mem[n], without going further to do unnecessary
computation.

The diagnostic printout should show that when running the fib.dp-5.go program,
fibonacci(n) is called only 9 times. The calling order is F(5), (F4), F(3), F(2), F(1), F
(0), F(1), F(2), F(3). Furthermore, the last three calls F(1), F(2), F(3) are returned
immediately, without doing unnecessary computation. Thus, the fib.dp-5.go pro-
gram only performs 6 necessary computations F(5), (F4), F(3), F(2), F(1), F(0).

To compute Fibonacci number F(n), it is easy to find that we need to call F(i) for
all i < n. The bottom-up approach takes advantage of this fact and prepares the small
Fibonacci number before a call. It starts at the smallest subproblems F(0) and F(1),
memorize their solutions, and combines their solutions into the solution of the
subproblem next level up, e.g., F(2)=F(1)+F(0). This iterative process continues,
to obtain F(3)=F(2)+F(1), F(4)=F(3)+F(2), until the topmost solution F(5) is
obtained. When we compute some Fibonacci number, for example F(3), we do not
need to worry whether the smaller numbers F(2) and F(1) have been computed or
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package main
import "fmt"
func main() {
fmt.Println("F(5)=", fibonacci(5))
}
func fibonacci(n int) int {
fmt.Printin("F(",n,")")
ifn==01Iln==1{
return n
}

return fibonacci(n-1)+fibonacci(n-2)

}

(@)

package main
import "fmt"
var mem [6]int
func main() {
fori:=0;i<6;i++ { mem[i]=-1}
fmt.Println("F(5)=", fibonacci(5))
}
func fibonacci(n int) int {
fmt.Println("F(",n,")")
if mem[n] != -1 {
fmt.Println("Immediate Return: F(",n,")=",mem[n])
return mem|[n]

1

ifn==0Iln==1 {
mem[n] =n
fmt.Println("Return: F(",n,")=",mem[n])
return mem[n]

}

mem[n] = fibonacci(n-1) + fibonacci(n-2)
fmt.Println("Return: F(",n,")=",mem[n])
return mem|[n]

(®)
Fig. 4.9 Two programs to compute Fibonacci number F(5). (a) Recursive program fib-5.go. (b)

Dynamic programming program fib.dp-5.go

not. Thus, we do not need -1 to represent unfinished work, as what we did in fib.dp-5.
go. The bottom-up program fib.dp.bu.go is shown below. In this code, we do not
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Fig. 4.10 The sequence of F5)D
fibonacci(n) calls, where @,
@), ... denote the order

F4)® F(3)®
F3)® F2)® FQ)® F(1)®

SN NN

FQ)® FH® F1)® FO)® F1)® FO)@
F)® FO)®

even store all numbers we compute, since we only need F(n-1) and F(n-2) to
computer F(n).

package main // programfib.dp.bu.go
import "fmt"
func main() {

fmt.Println("F(5)=", fibonacci (5))

}
func fibonacci (n int) int {
a :=0
b:=1
fori :=1; i<n+l; i++ {
a=a+b
a,b=Db, a

}

return a

}

The bottom-up approach often results in a simpler, iterative program. However,
students may find either the top-down or the bottom-up approach more intuitive and
easier to use. For instance, for the problem of finding a shortest path in a graph, many
students prefer the top-down approach.

4.3.2 (**%%) The Greedy Strategy

This example comes from economics. The 2012 Nobel Prize in Economics was
awarded to mathematical economists Alvin Roth and Lloyd Shapley in recognition
of their outstanding contributions to “the theory of stable distribution and its market



4.3 Other Examples of Interesting Algorithms 155

Wy | M; | My | M3 My | Wy | Wy | W3
W, | M | M | M3 M, | Wy | Wy, | W
W; | M | Mz | My Mz | Wy | Wy | W,

Fig. 4.11 Matrix W and matrix M in an example of the stable matching problem

design practice”. The stable matching problem is one of the starting point of this
research area.

Consider the following scenario. Suppose n boys M, M, .. ., M,, and n girls Wy,
W, ..., W, participate in a dance together, and each of them hopes to find a suitable
partner to dance. For each girl W;, according to her own criteria, there is a ranking for
the n boys. The boy in the higher rank indicates that W; thinks he is more suitable
than the boy in the lower rank. Similarly, for each boy M;, there will also be a ranking
for all n girls. Suppose that at the beginning of the dance, they arbitrarily formed
n pairs of dance partners and began to dance the first dance. In this process, if there
exists a pair of boys M; and girls W}, they are not each other ’s partners, but each of
them feels that the other one is better than their current partner, then when the next
song starts, they will choose the other as their partner instead of the current partner.
We call such a pair (girl, boy) an unstable pair. If there is an unstable pair in the
matching, we call such a matching unstable, otherwise we call such a matching
stable. The question now is whether these n girls and these n boys can form n pairs of
stable partners together.

This problem is called the stable matching problem. Below we give a more
rigorous mathematical description of this problem:

We can use two n X n matrices to represent our input. Matrix W represents the
preference matrix for girls. Each row is a permutation of {1,2,...,n}, and the i-th
row means that the ranking of boys for the girl W;. Matrix M represents the
preference matrix of boys, and the i-th row represents the ranking of M; for all
girls. An example is given in the table in Fig. 4.11.

The stable matching problem:

Is there a matching between boys and girls
{(Wi,M;), (W, M},), ... (Wi,M;)}, where {if,....i,} and {ji,....j,} are
two permutations of {1,2,...,n}, satisfying that there is no pair (W;_, M;,), where

k # ¢, such that M;, ranks higher than M;, in the order of W
than W;, in the order of M;,.

For example, in the example in Fig. 4.12, {(W, M), (W5, M,), (W3,M3)} is an
unstable matching. Let us examine girl W, and boy M,. W;’s current partner is M,
while in the ranking of W,, M, ranks higher than M. At the same time, for the boy
M,'s current partner W,, W, is also ranked higher than W,. So (W, M,) forms an
unstable pair. It can be verified that the matching {(W, M,), (W, M), (W3, M3)} is
a stable matching. Note that for unstable boy and girl pairs, both parties must feel
that the other is better. If only one party feels that the other is better, this does not

and W;, ranks higher

o
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Fig. 4.12 Example of M;: W, W, Wy HJ W;:M,;MM;
. s
~

stable matching and
unstable matching

constitute an unstable pair. For example, consider the pair M, and W3 here. Although
according to the order of W5, M, is better than its current partner for M3, in the view
of M5, his partner W, is better than W3. Thus he will not agree to change the partner.

This problem has important applications in economics. Mathematical economists
Gale and Shapley first proposed and studied this problem. They proved that regard-
less of the preference ranking of each boy and girl, a stable matching always exists.
In fact, they have given an algorithm to find such a matching. This algorithm is
called the Gale-Shapley algorithm today, described as follows.

The algorithm is divided into several rounds. In the first round, each boy selects
the girl who has the highest ranking in his preference order and invites the girl to
dance. For any girl W who receives the invitation, choose the best boy among the
inviters and become his “temporary” dance partner, and for all other inviters, refuse
the invitation. We change the status of W to be “not free”. As long as there are “free”
girls, the algorithm performs the following steps:

In the new round, for each boy who is unmatched in the previous round, he will
select the highest ranked girl who has not been invited by him according to his
preference order and send her an invitation, regardless of whether this girl currently
has a “temporary” dance partner. On the girl’s side, if some girl has “temporary”
dance partner, she pretends to receive the invitation from her partner in this round.
Then, for each girl who receives at least one invitation in this round, choose the best
boy among the inviters and become his “temporary” dance partner, and for all other
inviters, refuse the invitation. We change the status of this girl to be “not free”. The
algorithm re-examines whether there are “free” girls, and start a new round if there
are any “free” girls.

We give an example with 5 boys and 5 girls to illustrate how Gale-Shapley
algorithm works. In the example shown in Fig. 4.13, boys are represented by
numbers, and girls are represented by capital letters. On the left side of the figure,
the letter string next to the number indicates the ranking of the boy’s preference for
all girls. On the right side of the figure, a string of numbers next to the letter indicates
the ranking of girl’s preferences. The rankings on both sides are arranged from most
like to least like. For instance, the entry 1:CBEAD indicates that Boy 1 likes C the
most and D the least.
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Fig. 4.13 Example of the

Gale-Shapley algorithm Boys Girls
1: CBEAD A: 35214
2: ABECD B: 52143
3: DCBAE C: 43512
4: ACDBE D: 12345
5: ABDEC E: 23415

In the first round, each boy will propose to the girl he likes most. Girl C will
receive invitation from boy 1, and she becomes his “temporary” dance partner. Girl
A will receive invitation from boy 2,4,5 and she will become the “temporary” dance
partner of boy 5 according to her preference. Girl D will receive invitation from boy
3, and she becomes his “temporary” dance partner. In the end of this end, girl B and
E are still free while boy 2 and 4 do not have dance partner.

In the second round, boy 2 will propose to girl B and boy 4 will propose to girl
C. For girl B, she only receives the invitation from boy 2, thus she becomes his
“temporary” dance partner. But for girl C, she is currently the partner of boy 1 and
receives a new invitation from boy 4. She will compare these two boys according to
her preference, and becomes the partner of boy 4. In the end of this round, boy
1 becomes unmatched.

First round in Gale-Shapley algorithm Second round in Gale-Shapley algorithm

Boys Girls Boys Girls
1: CBEAD A: 35214 1: CBEAD A: 35214
2: ABECD B: 52143 2: ABECD B: 52143
3: DCBAE C: 43512 3: DCBAE C: 43512
4: ACDBE D: 12345 4: ACDBE D: 12345
5: ABDEC E: 23415 5: ABDEC E: 23415

In the third round, boy 1 will propose to girl B. But girl B thinks her current
partner boy 2 is better than boy 1, so she will refuse the invitation.
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In the fourth round, boy 1 will propose to girl E. Since girl E is free, she will
accept the invitation. Now, all girls become ‘“not free”, thus, the algorithm
terminates.

The reader can verify that {(1, E), (2, B), (3, D), (4, C), (5, A)} is indeed a stable
matching.

Third round in Gale-Shapley algorithm Fourth round in Gale-Shapley algorithm
Boys Girls Boys Girls

1: CBEAD A: 35214 || 1: CBEAD A: 35214

2: ABECD B: 52143 2: ABECD . / B: 52143

3: DCBAE C: 43512 || 3: DCBAE C: 43512

4: ACDBE D: 12345 || 4: ACDBE A D: 12345

5: ABDEC E: 23415 || 5. ABDEC E: 23415

Now, let us firstly discuss the correctness of Gale-Shapley algorithm. It is not
always obvious whether an algorithm correctly solves the problem we require,
especially for some complex algorithms. However, it is quite important to strictly
prove the correctness of any algorithm, otherwise, there is no guarantee for the
output. The previous algorithms based on divide-and-conquer method are relatively
simple, and the correctness of the algorithm is self-evident, so we omitted the proof
of the correctness. But for the Gale-Shapley algorithm, the correctness is not
obvious. It is even not obvious why the algorithm will eventually terminate. From
a mathematical point of view, “stable matching must exist” is not a clearly
established proposition.

Before proving the correctness of Gale-Shapley algorithm, we first observe some
simple properties of this algorithm:

. Every boy invites a girl at most once;

. Every girl keeps the status “not free” since she was first invited;

. Every girl has at most one dance partner during the process of the algorithm;

. Every boy has at most one dance partner during the process of the algorithm;

. Every unmatched boy will continue to invite until it matches or he has invited all
girls;

N AW N =

The following lemma shows the correctness of the Gale-Shapley algorithm
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Lemma 1: Gale-Shapley algorithm stops after O(n*) rounds, and after it stops, it
will output a matching.

Proof: According to property 1, we know that each boy invites n times at most, so
the total number of invitations is at most n°. In each round, there are at least one
invitation. Thus, the algorithm will terminate after at most n? rounds

When the algorithm stops, if all girls are “not free”, according to property 3 and
4, all girls and boys are matched. Thus it forms a matching.

It seems that we have already finished the proof. However, there are some
subtlety in the algorithm. In the algorithm, in each round, we say “for each
unmatched boy, he will select the highest ranked girl who has not been invited by
him and send the invitation”. But, does it possible that for some unmatched boy, he
has already invited all girls? We will show this case is impossible.

We show it by contradiction. Suppose for some boy M in the beginning of some
round 7, he is unmatched, but he has already invited all girls. According to property
2, after a girl receives her first invitation, her status will always be "not free". Since
this boy M has invited all girls, the status of all girls should be "not free" in the
beginning of round 7. Thus, the algorithm should stop in the previous round.
Contradiction. We finish the proof. |

Lemma 2: The output by the Gale-Shapley algorithm is a stable matching.

Proof: We will still prove it by contradiction. Suppose the final matching output by
the Gale-Shapley algorithm is {(W1, M;), (W, My), ..., (W, M,))}. Without loss of
generality, let us assume that the unstable pair in the final matching is (W, M>). This
pair is unstable means W, prefers M, to M,, and M, prefers W, to W, (see figure
below).

M, W,
./'

e
R
M: l——— W,

We consider two cases:

Case 1: M, has never invited W,. Since M, and W, are finally together, it means
that M, invites W, in some round. On the other hand, since M, prefers W, to W,, M,
must invite W, before he invites W,. Contradiction.

Case 2: M, has invited W, in some round. Since M, and W, are finally together
and M, has invited W; in some round, it means W; refuses the invitation of M, in
some round due to she receives invitation from some better boy. For every girl, she
will refuse the invitation or change partner only if some better boy sends her
invitation, so it means in the girls’ view, their partners becomes better and better.
Since the final partner of W, is M, girl W, prefers M, to M,. Contradiction.

Therefore, in each case, we will reach contradiction. We finish the proof. ]

Question: in your opinion, is this algorithm beneficial for boys or girls?
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Fig. 4.14 An example run of the quicksort algorithm

4.3.3 The Randomization Strategy

In the previous section, we have already introduced the sorting problem and
discussed three sorting algorithms: the bubble sort algorithm, the insertion sort
algorithm and the merge sort algorithm. In addition to these sorting algorithms,
there are many different sorting algorithms. In this section, we will introduce a
sorting algorithm commonly used in our computers: the quicksort algorithm. The
difference is that we will use randomized process in the algorithm, and we will show
the power of randomization.

The core idea of the quicksort algorithm is similar to the merge sort algorithm:
call itself recursively to sort the subproblems. In the merge sort algorithm, we firstly
solve the subproblems and then try to merge the results into a whole ordered set. But
in the quicksort algorithm, we will carefully divide the original problem into sub-
problems, and after solving the subproblem, the merge process becomes trivial. How
can we achieve this? Suppose the original array is A. The key idea is to divide A into
two subsets A; and A, where all elements in A, are smaller than all elements in A,,
then the merge process will be trivial.
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QuickSort(A, p, r)
Ifp<r

1. g = Partition(A, p, r)
2. QuickSort(A, p, g-1)
3. QuickSort(A, g+1, r)

The above is the pseudocode of the quicksort algorithm, which sorts the p-th element
to the r-th element in the array A. It needs to call a Partition subroutine.

The Partition (A, p, r) subroutine uniformly and randomly extracts an element
x from the array A[p,. . ., r], and then adjusts the array Al[p,. .. r] so that the numbers
larger than x are arranged on the right side of x, and the numbers smaller than x are
arranged on the left side of x. Note that the numbers on the right side are not sorted,
and the same goes for the left side. Partition(A, p, r) finally returns the position g of
X in the array.

After the operation of the Partition() subroutine, we know that any number on the
left side of x must be smaller than the one on the right side, so we only need to sort
the elements A[p,. . ., g-1] on the left side of x and the elements A[q + 1, . . ., r] on the
right side of x, separately. We can do so by recursively call QuickSort() for the two
subproblems.

Figure 4.14 shows an example of the specific implementation of the quicksort
algorithm. The elements which are randomly selected each time are marked in red in
the figure.

Part of the Go code to implement the above quicksort algorithm is shown below,
for students who want more details. Note that initially, the input data is stored in a
slice variable A.

func quicksort (A []int) {
if len(A) <2 { return }
lowerA, upperA :=partition(a)
quicksort (lowerA)
quicksort (upperd)

}

func partition (A []int) ([lint, [lint) { // return two slices as
output
pivotIndex := rand.Intn(len(A)) // randomly select a pivot

pivotValue := A[pivotIndex]
lower :=0
A[pivotIndex], Allen(A)-1] =A[len(A)-1], AlpivotIndex]
fori:=0; i<len(A); i++ {
if (A[i]<pivotValue) {
Allower], A[i] =A[i], Allower]
lower++

}

Allower], Allen(A)-1] =A[len(A)-1], Allower]
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return A[0:lower], Allower+l:1len(A)]

}

Finally, let us analyze the performance of the quicksort algorithm. Because the
Partition() subroutine called in the quicksort algorithm selects the elements ran-
domly, the running time of the quicksort algorithm is not deterministic but is a
random variable. We use T(n) to represent the time required by the quicksort
algorithm to sort n unordered numbers, thus 7(n) is a random variable.

At best, if each time the Partition() subroutine happens to divide the array into two
equal parts, the total sorting time will be very fast. We use 7°°(n) to represent the
time of the algorithm in this lucky case. Then we have

Tbest(n) —_ 2Tbest (g) +n

By solving the recursion, we have 7°°(n) = O(n log n).

However, if the length of each part is very uneven, then the algorithm will be very
slow. For example, in the extreme cases, the algorithm will always choose the largest
elements each time. In this case, one of the parts after the partition is the empty set,
while the other part contains  — 1 element. We use 7"""*(n) to represent the time of
the algorithm in this unlucky case. Then we have

Twnrst(n) — Twor&t(n _ 1) _|_ n.

By solving the recursion, we have 7"°"*(n) = O(n?).

So which one is better to represent the performance of the quicksort algorithm?
Usually, we use neither best case analysis nor worst case analysis. Instead, our goal
is to ana