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Commutator of the Quark Mass Matrices in the Standard Electroweak Model
and a Measure of Maximal CP Nonconservation
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The structure of the quark mass matrices in the standard electroweak model is investigated. The
commutator of the quark mass matrices is found to provide a convention-independent measure of
CP nonconservation. The question of maximal CP nonconservation is discussed. The present ex-
perimental data indicate that nowhere is CP nonconservation maximal.
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One of the outstanding problems in physics is that of
"explaining" the quark masses and mixings. The
standard electroweak model, in spite of its dazzling
empirical successes, provides only a partial solution to
this problem by predicting that the quark mixing ma-
trix is unitary. However, the values of the mixing
parameters or the quark masses cannot be predicted.
For example, if there are three families the mass ma-
trices m and m' (referring respectively to charge —, and

quarks) are arbitrary three by three matrices. A
gedanken diagonalization of these matrices is supposed
to yield the quark masses, i.e.,

UL mU?? = diag(m„, m„m, ),

ULm'Uj? = diag(md, m„mb),

where U„and U„', x =L,R, are unitary matrices and
m~ denotes the mass of the quark j. Furthermore, the
unitary matrices in (1) are not measurable except for
the product UL Ul' which is the usual quark mixing
matrix, ' predicted to be unitary.

The traditional approach to the quark mass problem
is to go beyond the standard model and assume specif-
ic forms for m and m' which, on subsequent diagonali-
zation, yield the eigenvalues and the mixing parame-
ters. Many models, based on this approach, are avail-
able in the literature and a few examples are listed in
Ref. 2.

Since the quark mass matrices are of fundamental
importance one would like to gain an insight into their
structure without making assumptions. A first step in
this direction could be to try and determine the mass
matrices from experiment. Evidently the latter ap-
proach can at most be partially successful because the
knowledge of the eigenvalues and the mixing parame-
ters is not sufficient, for this purpose. Nonetheless, it
is possible to make some progress by noting that, in
the standard model, it is always possible to go to a
Hermitian basis for the mass matrices and, without
loss of generality, to assume that m = m and m' = m' .
Then the subscripts on the unitary matrices in Eq. (1)

m~ m~
UMU =D =diag ", , 1,

m~ m~

(3)
U'M' U' = D' = diag, , 1,

mb mb

V„d

V= UU' = V,d

Vus Vub

V.s Vcb-

Vtb

(4)

Even in this Hermitian basis it is not possible to deter-
mine M and M'. However one may relate them to
each other, by eliminating, for example, the matrix
U' whereby both M and M' may be expressed as func-
tions of U and the measurable quantities. I shall re-
turn to this point later on.

A lesson learned from quantum mechanics is that
the observables are represented by Hermitian opera-
tors and that their commutators give a measure of
their compatibility, i.e., whether the observables can
be measured simultaneously or not. The Hermitian
mass matrices, in Eq. (3), are only "partial observ-
ables. " Only their eigenvalues and their "relative
orientation, " i.e., the quantity V, are measurable.
Nevertheless, their commutator is a measure of
whether they can be diagonalized simultaneously or
not. We shall see later on that this commutator seems
to play an important role.

The commutator of the mass matrices is given by

[M,M'] = /C,

where C is a traceless Hermitian matrix. From Eqs.

may be dropped. Furthermore, it is convenient to nor-
malize the mass matrices, by defining

M/j r??/j /m, I M/ji m/j / m$ f

so that the largest eigenvalue, for both mass matrices,
is 1. Thus the mass matrices are related to the
measurable quantities through the following relations:
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(2)—(4) follows that An essential feature of J, which makes it very impor-
tant when discussing CP nonconservation, is that it is
phase-convention independent as follows. One may
redefine, at will, the quark mixing matrix by

c= —iv" [D, vD v']U.

V- 4(~1, ~2, ~3) V@(P1,/32, P3),

Hence, the eigenvalues of C are calculable in terms of
the measurable quantities. I find that the determinant
of Cis given by

detC = —2FF' J.

Here

F = (m, —m, ) (m, —m„) (m, —m„)/m, ',

I"= (m$ —m, ) ( mb
—md ) (m, —md )/mb,

and

(7) where

@(~1 ~2 (x3) = diag(e ', e ', e ')

without changing the physics. Under this transforma-
tion the elements Vjk change,

V„exp[i (o. +P„)]V„,

Im ( V„V„,Vq, V,1') (12)

is obtained. All of these quantities are equal, up to an
overall sign, because Vis unitary,

Im( V11 V22 V12 V21 ) = Im( V22 V33 V23 V32 ) = .

( Vl 1 V22 V12 V21 ) .

The V~ are the elements of the matrix V in Eq. (4);

A remarkable feature of the determinant, in Eq. (7),
is that it vanishes if and only if there is no CP noncon-
servation. For example, if m, were equal to m, the CP
phase could be removed, etc. Furthermore, the quan-
tity J, in the Kobayashi-Maskawa parametrization, is
given by

J= $1 s2S3C] c2c3 Sinh,2

(10)
s; = sinH;, c; = cosH;.

Evidently J vanishes if any of the following conditions
is satisfied

e, =o, e, =~/2, s=O, s=~,
whereby there will be no CP nonconservation.

The product appearing in Eq. (10) is familiar from
CP calculations. It is well known that all CP-
nonconservation effects in the standard model are pro-
portional to it. The quantity J is obtained as follows:
(i) Cross out the third row and third column of the
matrix V, (ii) put asterisks on the elements along the
diagonal of the two by two matrix which remains, and
(iii) multiply the four elements and take the imaginary
part. Note that there is nothing special about the third
row and the third column. There are nine different
ways of crossing out one row and one column of the
matrix V whereby the generic product

but the product (12) remains invariant. Hence J is in-
variant.

The vanishing of the determinant of the commuta-
tor of the mass matrices, when there is no CP noncon-
servation, is a special case of a theorem which I shall
discuss now.

Considering the standard model with n quark fami-
lies, we may write the analog of Eqs. (2)—(4) for n

families, where all the matrices are n by n.
Theorem. —For the case of n families, if the mixing

matrix Vis real (i.e., there is no CP nonconservation)
then if r is an eigenvalue of C so also is —r.

Proof: C is given by

C=U CU, c = —I [D, vD'v']. (14)

If, however, n is odd, at least one of the eigenvalues
must vanish and, therefore, the determinant also van-
ishes, i.e. , the commutator becomes singular.

For n =3, the eigenvalues of C, in the limit of Vbe-
ing real, are given by

ro=o, r+ ——+ [—,
' Tr(C')]' '.

In terms of measurable quantities we have r+ =3 g .
Here I have used the parametrization of V a la Wol-
fenstein, 4

Evidently the Hermitian matrices C and C have com-
mon eigenvalues. If V is real the matrix C is purely
imaginary and therefore it is antisymmetric. Then the
eigenvalue equation, det(C —r1) =0, yields immedi-
ately that —r is also an eigenvalue. This completes the
proof.

From the theorem it follows that if the number of
families is even, n = 2k, and V is real, then the eigen-
values of C appear in pairs r, , —r, , j = 1—k, and

detC = ( —) )"fI (r, )'.

1 ——Z 2
2

1 ——z2
2

A g3(p —iq)

+ o(z4), (15)
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where

M =M'+5,
where

(17)

a= U'[D —VD V']U; (18)
Thus the difference M —M' is calculable, from data,
up to a unitary rotation. The eigenvalues of 4, includ-
ing the order P 2, are given by

80 = 0, 5+ = —, [d + (d + 4A A. ) '( ],

where d =m, /m, —m, jm(, is a quantity which is at
most of order A. . Equation (19) shows that b, is non-
vanishing in order ~ . Hence M and M' are not equal
if the order-~ term is included. This is interesting be-
cause in the diagonal basis for the mass matrices we
have, from Eq. (3), D =D'+0 (A. ) if the quantity d
were to vanish, a possibility which is not excluded by
experiment.

The above analysis of the commutator of the mass
matrices which resulted in the phase-convention —in-
dependent "CP-nonconservation measure, " J, gives a
natural framework for discussing the question of
"maximal CP nonconservation. " This question is a
matter of considerable current interest. My approach
here differs from that of the previous authors. The is-
sue is the following. The fact that parity nonconserva-
tion is maximal in charged-current interactions is seen
directly in the Lagrangean, by the presence of ap-
propriate 1 —.y5 factors. Similarly, charge-conjugation
invariance is maximally violated. What should we

g= V„, =0.22, 3 =1, p +v) & 0.25.

By "turning on" the CP nonconservation the small
eigenvalue moves away from zero. I find

2m, m,ro= 2qX
mt my

which is at most of order X, if m, & 40 GeV. This
equation explicitly demonstrates how the small eigen-
value approaches zero as CP nonconservation is turned
off, i.e., q 0.

The mass matrices M and M', for three families,
have a very puzzling feature which was recently
discovered by Frampton and the present author. 3 Us-
ing Eqs. (3), (4), and (15) we found that M and M'
are equal to order ),

M=M +O(~'). (16)
This empirical relation, which is independent of the
Higgs structure of the standard model, indicates that
the mass matrices for the up- and down-type quarks
are very much "aligned. " To study this alignment in
more detail, I put

look for in the Lagrangean in order to see whether CP
nonconservation is maximal or not? How does one
define maximal CP nonconservation?

In discussing this issue it is appropriate to distin-
guish an underlying violation of a physical principle
and its manifestation in specific physical processes.
For instance, in the case of parity, the amplitude for a
physical process is of the generic form

~ =tV+ad,
where V (&) denotes the parity-conserving (-non-
conserving) amplitude and v (a) is the relevant cou-
pling constant. Experiment measures the parity-
nonconserving quantity

(20)

2Re(v Va'2')
l~ vl'+ la& I' ' —1~Ep~1, (21)

r —r
r+r' 1-Ec~—

In order to get an effect it is well known that at least
two weak amplitudes with different phases are re-
quired. Furthermore, one must go beyond the tree ap-
proximation and include either final-state interactions
or finite widths, etc. , which contribute with different
phases to the two amplitudes. In addition at least four
different quarks must be involved. Hence the simplest
fundamental case that one can consider is just a transi-
tion involving four different quarks: two up-type
quarks denoted by i and k and two down-type quarks
denoted by j and l. Then the transition amplitude is
given by

~ = ( V~ Vk() A te ' + ( V„V,()3 2e (24)

where the Vs are the elements of the mixing matrix;
A t 2 denote the (real) amplitudes and $t 2 are the
phases due to higher-order interactions. Similarly, the
amplitude for the CP-conjugate process is given by

~ = (V(J Vk()'Ate '+ (Vkj V,.()&2e

Equations (24) and (25) yield

(25)

whereas the intrinsic parity-nonconserving parameter
1s

2 Re(ua')
l~l'+ la I''

Thus, even if the intrinsic parity nonconservation
would be maximal, ap= + 1, a physical process may
appear to be parity conserving if either of the ampli-
tudes V or 3 should vanish.

In discussing CP nonconservation the simplest ana-
log of the above treatment of parity is to compare the
transition rates for a physical reaction and its CP-,
conjugate reaction. Thus, we define

Ecp = 21m(np')sin(h@)A(A2{ lo, l 3
&

+ lpl Az +2Re(op')cos(h@)AtA2} (26)
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where

Vij Vkl~ / Vkj Vil'r ~4 0'2 41'

This asymmetry could be as large as 0.8 in magnitude
if p = 0 and q2= 0.25. (2) Transitions involving c, t,
d, and s, where

Comparison with the case of parity, Eqs. (21) and
(22), indicates that the appropriate definition of the
intrinsic CP-nonconservation parameter is

21m( V21 V32V22V31 )
Qgp =

I V21 321 + I V22V311

21m(aP )
l~l'+ Ipl'

' —&-&c~- (28)
—2n

1+ (1 —p)'+ v)2

In the standard model with three families there are
nine fundamental four-quark transitions (obtained
from crossing out one row and one column of the ma-
trix V). Hence there are nine different CP
nonconservation parameters of the kind given in Eq.
(28). The numerators are all, up to a sign, equal to
the quantity 2f, Eq. (9).

From Eq. (28) it follows that the maximal CP non-
conservation occurs iff n= VjVkt and P= VkjVi are
equal in magnitude and out of phase by + w/2. The
question is then whether this can happen in the stan-
dard model. Evidently, it is impossible to have maxi-
mal CP nonconservation in all the mne fundamental
transitions. For example, if V» V» ——+ i V» V» and
v» v3$ iv3$ vip then v3q v» and v3q vz& must be
relatively real. Thus for CP the situation is quite dif-
ferent from the case of parity where all the nine transi-
tions W+ ff' (where f and f' denote, respectively,
an up-type and a down-type quark) yield maximal pari-
ty nonconservation. Another essential point is that the
maximal CP nonconservation is not just a question of
a relative phase assuming the value + n./2; the magni-
tudes of the coupling constants are also essential.
Note also that the maximal CP nonconservation does
not correspond to sin 5 = 1.

A quick inspection of the parametrization (15) indi-
cates that the CP nonconservation is large in two cases:
(1) Transitions corresponding to crossing out the third
row and the first column of V. These transitions
which involve the quarks u, c, b, and s are character-
ized by the intrinsic CP-nonconservation parameter

21m( V12V23 V13V22) 2q
&c~ = (29)

I Vt2V231 +
I V13V221' 1+p +g

An example of this kind of effect is the observed CP
nonconservation in the E -E system, where the d, s
are the external quarks and c, t those internal quarks
which are expected to give the bulk of the contribu-
tion.

From the above analysis I conclude that if the quark
mixing matrix V is the origin of CP nonconservation
and the experimental data on the b lifetime are correct
then nowhere is CP nonconservation maximal.
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